Search published articles


Showing 3 results for Lotfi

O. Omidi, V. Lotfi,
Volume 8, Issue 3 (September 2010)
Abstract

 Neither damage mechanics model nor elastoplastic constitutive law can solely describe the behavior of concrete satisfactorily. In fact, they both fail to represent proper unloading slopes during cyclic loading. To overcome the disadvantages of pure plastic models and pure damage approaches, the combined effects need to be considered. In this regard, various classes of plastic-damage models have been recently proposed. Here, the theoretical basics of the plastic-damage model originally proposed by Lubliner et al. and later on modified by Lee and Fenves is initially presented and its numerical aspects in three-dimensional space are subsequently emphasized. It should be mentioned that a part of the implementation in 3-D space needs to be reformulated due to employing a hyperbolic potential function to treat the singularity of the original linear form of plastic flow proposed by Lee and Fenves. The consistent algorithmic tangent stiffness, which is utilized to accelerate the convergence rate in solving the nonlinear global equations, is also derived. The validation and evaluation of the model to capture the desired behavior under monotonic and cyclic loadings are shown with several simple one-element tests. These basic simulations confirm the robustness, accuracy, and efficiency of the algorithm at the local and global levels. At the end, a four-point bending test is examined to demonstrate the capabilities of the model in real 3-D applications.


E. Lotfi, S. Delfan, A. Hamidi, H. Shahir, Gh. Fardi,
Volume 12, Issue 1 (Transaction B: Geotechnical Engineering, January 2014)
Abstract

In saturated soils, heating induces thermal expansion of both grains and the pore fluid. Lower thermal expansion coefficient of aggregates results in the increase of pore pressure and reduction of the effective stress besides subsequent volume changes due to the dissipation of pore pressure and heat transfer. Dissipation of thermally induced pore pressure with time is a coupled thermo-hydro-mechanical (THM) phenomenon, involving gradients of pore pressure and temperature, hydraulic and thermal flows within the mass of soil and changes in the mechanical properties with temperature. The objective of this paper is presentation of a numerical method to determine the effect of temperature on consolidation of clays. In this regard, the finite element code, PISA is used for one dimensional THM analysis of porous media. The analysis performed using both linear elastic and elastoplastic Cam clay models. Modified Cam clay model was applied in elastoplastic analysis. Variation of temperature, displacements and pore pressure determined with time and compared with numerical solutions of other researchers. Also it was indicated that implementation of coupled THM analysis yields better results for displacements compared to the hydro mechanical (HM) one. Application of elastoplastic constitutive model instead of linear elastic one indicated that preconsolidation pressure has an important effect on results of analysis.
Mohammad Reza Lotfizadeh, Mohsen Kamalian,
Volume 14, Issue 2 (Transaction B: Geotechnical Engineering 2016)
Abstract

A study has been conducted on the bearing capacity of strip footings over sandy layered soils using the stress characteristic lines method. Traditional bearing capacity theories for specifying the ultimate bearing capacity of shallow foundations are based on the idea that the bearing layer is homogenous and infinite. However layered soils are mainly happening in practice. The stress characteristic lines method is a powerful numerical tool in order to solve stability problems in geotechnical engineering. In the present paper, an appropriate algorithm is derived for estimating the static bearing capacity of strip footing located on two layered soils using the stress characteristic lines method. Some numerical and experimental examples are presented in order to validate the proposed algorithm. Some graphs and equation are presented for initial estimating the effective depth of strip footings located on two layered soils.



Page 1 from 1     

© 2019 All Rights Reserved | International Journal of Civil Engineering

Designed & Developed by : Yektaweb