Search published articles

Showing 5 results for Kalantar

Sh. Afandizadeh, S.a.h Zahabi, N. Kalantari,
Volume 8, Issue 1 (3-2010)

Logit models are one of the most important discrete choice models and they play an important role in

describing decision makers’ choices among alternatives. In this paper the Multi-Nominal Logit models has been used

in mode choice modeling of Isfahan. Despite the availability of different mathematical computer programs there are

not so many programs available for estimating discrete choice models. Most of these programs use optimization

methods that may fail to optimize these models properly. Even when they do converge, there is no assurance that they

have found the global optimum, and it just might be a good approximation of the global minimum. In this research a

heuristic optimization algorithm, simulated annealing (S.A), has been tested for estimating the parameters of a Logit

model for a mode choice problem that had 17 parameters for the city of Isfahan and has been compared with the same

model calculated using GAUSS that uses common and conventional algorithms. Simulated annealing is and algorithm

capable of finding the global optimum and also it’s less likely to fail on difficult functions because it is a very robust

algorithm and by writing the computer program in MATLAB the estimation time has been decreased significantly. In

this paper, this problem has been briefly discussed and a new approach based on the simulated annealing algorithm

to solve that is discussed and also a new path for using this technique for estimating Nested Logit models is opened

for future research by the authors. For showing the advantages of this method over other methods explained above a

case study on the mode choice of Isfahan has been done.

Sh. Afandizadeh, M. Yadak, N. Kalantar,
Volume 9, Issue 1 (March 2011)

The congestion pricing has been discussed as a practical tool for traffic management on urban transport networks. The traffic congestion is defined as an external diseconomy on the network in transport economics. It has been proposed that the congestion pricing would be used to reduce the traffic on the network. This paper investigates the cordon-based second-best congestion-pricing problems on road networks, including optimal selection of both toll levels and toll locations. A road network is viewed as a directed graph and the cutest concept in graph theory is used to describe the mathematical properties of a toll cordon by examining the incidence matrix of the network. Maximization of social welfare is sought subject to the elastic-demand traffic equilibrium constraint. A mathematical programming model with mixed (integer and continuous) variables is formulated and solved by use of two genetic algorithms for simultaneous determination of the toll levels and cordon location on the networks. The model and algorithm are demonstrated in the road network of Mashhad CBD.
Sh. Afandizadeh, H. Khaksar, N. Kalantari,
Volume 11, Issue 1 (TransactionA: Civil Engineering, March 2013)

In this paper, a new approach was presented for bus network design which took the effects of three out of four stages of the bus planning process into account. The presented model consisted of three majors steps 1- Network Design Procedure (NDP), 2- Frequency Determination and Assignment Procedure (FDAP), and 3- Network Evaluation Procedure (NEP). Genetic Algorithm (GA) was utilized to solve this problem since it was capable of solving large and complex problems. Optimization of bus assignment at depots is another important issue in bus system planning process which was considered in the presented model. In fact, the present model was tested on Mandl’s bus network which was a benchmark in Swiss network and was initially employed by Mandl and later by Baaj, Mahmassani, Kidwai, Chakroborty and Zhao. Several comparisons indicated that the model presented in this paper was superior to the previous models. Meanwhile, none of the previous approaches optimized depots assignment. Afterwards, sensitivity analysis on GA parameters was done and calculation times were presented. Subsequently the proposed model was evaluated thus, Mashhad bus network was designed using the methodology of the presented model.
Farzin Kalantary, Javad Sadoghi Yazdi, Hossein Bazazzadeh,
Volume 12, Issue 3 (Transaction B: Geotechnical Engineering, July 2014)

In comparison with other geomaterials, constitutive modeling of rockfill materials and its validation is more complicated. This is principally due to the existence of more intricate phenomena such as particle crushing, as well as laboratory test limitations. These issues have necessitated developing more complex constitutive models, with many parameters. Regardless of the type of model, the calibrations of the parameters in such models are considered as one of the most important and challenging steps in the application of the model. Therefore, the need for comprehensive and rapid methods for evaluation of optimum parameters of the models is deemed necessary. In this paper, a Neuro-Fuzzy model in conjunction with Particle Swarm Optimization (PSO) is used for calibration of the twelve parameters of Hierarchical Single Surface (HISS) constitutive model based on the Disturbed State Concept (DSC). The Neuro-fuzzy system is used to provide a high-degree nonlinear regression model between the deviatoric stress and volumetric strain versus axial strain that has been obtained from consolidated drained large scale tri-axial tests on rockfill materials. The model parameters are determined in an iterative optimized loop with PSO and ANFIS such that the equations of DSC/HISS are simultaneously satisfied. Material data used in this study are gathered from the results of large tri-axial tests for two rockfill dams in Iran. It is shown that the proposed method has higher accuracy and more importantly its robustness is exhibited through test predictions. The achieved improvement is substantiated in a comparison with the more widely used "Least-Square" method.
F. Dastjerdy, Dr O.r. Barani, Dr F. Kalantary,
Volume 13, Issue 3 (Transaction B: Geotechnical Engineering 2015)

In this paper, a finite element model is developed for the fully hydro-mechanical analysis of hydraulic fracturing in partially saturated porous media. The model is derived from the framework of generalized Biot theory. The fracture propagation is governed by a cohesive fracture model. The flow within the fracture zone is modeled by the lubrication equation. The displacement of solid phase, and the pressure of wetting and non-wetting phases are considered as the main unknown parameters. Other variables are incorporated into the model using empirical relationships between saturation, permeability and capillary pressure. Zero-thickness element and conventional bulk element are used for propagating fracture and the surrounding media, respectively. The model is validated with respect to analytical solution of hydraulic fracture propagation problem in saturated media and then the problem is solved in semi-saturated media, considering the wetting and non-wetting pore fluid. 

Page 1 from 1     

© 2019 All Rights Reserved | International Journal of Civil Engineering

Designed & Developed by : Yektaweb