Search published articles


Showing 4 results for Heidarzadeh

M. Heidarzadeh, A.a. Mirghasemi, S. Etemadzadeh,
Volume 5, Issue 1 (March 2007)
Abstract

A new chemical grouting method has been developed for conglomerate formations based on the experimental studies. Due to the lack of chemical grouting experience of conglomerate formations, the testing programs were performed to evaluate the performance of chemical grouting in the water sealing of part of conglomerate foundation of Karkheh earth dam using a combination of field and laboratory tests. First, the chemical grouts alone were examined with regard to viscosity-time behavior, gelation time, temperature-influence, stability, and deformability. These laboratory tests, led to the selection of the final chemical grout which was a solution of sodium silicate, water, and ethyl acetate as reactant. The second step tested grout-soil interaction: The injectability and permeability reduction of the selected chemical grout was examined in field injection tests. In this step two field tests were performed including shallow test holes without hydrostatic pressure and full scale tests under dam real hydrostatic pressure head. Based on these two field injection tests, performed in the conglomerate foundation of Karkheh dam, a new chemical grouting method for conglomerate formations is proposed and satisfactory results led to the recommendation of this method for eventually successful application.
M. Heidarzadeh, M. Dolatshahi Pirooz, N. Hadjizadeh Zaker, M. Mokhtari,
Volume 5, Issue 4 (December 2007)
Abstract

Makran Subduction Zone (MSZ) offshore of Iran and Pakistan is one of the most tsunamigenic sources in the Indian Ocean. Historically, the MSZ has generated some tsunamigenic earthquakes like that of 28 November 1945 with the death tool of more than 4000 people along the coasts of Iran, Pakistan, India, and Oman. In this study, the tsunami hazard associated with the MSZ is investigated. At first, a review of historical tsunamis in the Indian Ocean basin was performed which reveals the Makran region has experienced al least 4 tsunamis including events of 326 BC, 1897, 1008, and 1945. Consequently, since the pattern and extent of vertical ground deformation from an earthquake determines whether or not a tsunami is formed, a computer program is developed to predict the seafloor deformation due to the earthquake occurrence in the MSZ. The model was verified through run of it on some actual tsunamis so far occurred. Then, using the data of the 1945 Makran tsunami, the seismic parameters of the MSZ were calibrated. Finally, we used the developed computer program to calculate seafloor deformation at the location of Makran subduction zone for several earthquake scenarios with moment magnitudes ranging between 6.5 and 8.5. The results of this research show that the risk of tsunami generation from MSZ can be classified into three main categories, as follows: (1) very little risk for tsunami generation in the case of the occurrence of an earthquake having magnitude up to 7 (2) little to medium risk for moment magnitudes ranging between 7 and 7.5 and (3) high risk for moment magnitude greater than 7.5. At the end of the paper, modeling of tsunami propagation is performed for an earthquake scenario with magnitude of 8 offshore Chabahar, in order to give preliminary information about tsunami behavior in this region.
M. Heidarzadeh, A.a. Mirghasemi, S. M. Sadr Lahijani, F. Eslamian,
Volume 11, Issue 1 (Transaction B: Geotechnical Engineering, May 2013)
Abstract

In a rare engineering experience throughout the world, we successfully stabilized relatively coarse materials of drain using

cement grouting. The grouting work was performed at the Karkheh earth dam, southwest Iran, and was part of the efforts to

extend the dam’s cut-off wall. Since the dam was completed, the execution of the new cut-off wall from the dam crest was

inevitable. Hence, one of the main difficulties associated with the development of the new cut-off wall was trenching and execution

of plastic-concrete wall through the relatively coarse materials of drain in the dam body. Due to high permeability of drain, the

work was associated with the possible risk of excessive slurry loss which could result in the collapse of the trench. In order to

achieve an appropriate grouting plan and to determine the mix ratio for the grouting material, a full-scale test platform consisting

of actual drain materials was constructed and underwent various tests. Results of the testing program revealed that a grouting

plan with at least 2 grouting rows and a Water/Cement mix ratio of 1/ (1.5-2) can successfully stabilize the drain materials. After

finalizing the technical characteristics of the grouting work, the method was applied on the drain materials of the Karkheh dam

body. The results were satisfactory and the drain materials were stabilized successfully so that the cut-off wall was executed

without any technical problem.


M. Heidarzadeh, A. A. Mirghasemi, H. Niroomand,
Volume 13, Issue 1 (Transaction B: Geotechnical Engineering March 2015)
Abstract

We report engineering experiences from the critical task of relief well installation under high artesian flow conditions at the downstream toe of the Karkheh earth dam, Iran. Due to the establishment of excessive uplift pressure at the downstream toe of the Karkheh dam, installation of a series of new relief wells was considered to permanently relieve part of these pressures. The mentioned uplift pressure, as high as around 30 m above the ground level, was produced in a confined conglomerate aquifer bounded above and below by relatively impervious mudstone layers which reduced the safety factor of the dam toe to below 1.0. Investigations on the shortcomings of the old relief wells installed at the dam site showed that the main problems were: insufficient well numbers, insufficient well diameters, irregular well screens causing their blockage by time passing, and insufficient total opening area. Despite engineering difficulties and associated risk of downstream toe instability, installation of new relief wells was successfully completed under high artesian flow conditions” was successfully completed. The employed technique for the construction of the new relief wells under flowing artesian conditions was based on: 1) cement grouting and casing of the well, 2) telescopic drilling, 3) application of appropriate drilling fluid, and 4) controlling the artesian flow by adding a long vertical pipe to the top of the relief wells. Numerical modeling of seepage for the Karkheh dam foundation showed that, as a result of the installation of the new relief wells, the safety factor of the downstream toe increased to the safe value of 1.3 for the normal reservoir water level.

Page 1 from 1     

© 2019 All Rights Reserved | International Journal of Civil Engineering

Designed & Developed by : Yektaweb