Search published articles


Showing 2 results for Ghiassian

H. Ghiassian,
Volume 2, Issue 1 (March 2004)
Abstract

A study of bearing capacity and compressibility characteristics of cohesive soil, reinforced by geogrid and supporting square footing loads has been conducted. The lack of adequate frictional resistance between clay and reinforcing elements was compensated by using a thin sand layer (lens) encapsulating the geogrid sheet. In this way, tensile forces induced in the geogrid were transferred to the bulk clay medium through the sand particles and soil reinforcement was improved Experiments were conduced on two sets of specimens, one set of 1 x 1 x 1 m dimension and the footing size of 19 x 19 cm (series A), and the other set of 0.15 x 0.15 x 0.15 m dimension and the footing size of 3.7 x 3.7 cm (series B). The loading systems for the above specimens were stress controlled and strain controlled respectively. All specimens were saturated and presumably loaded under an undrained condition. The results qualitatively confirmed the effectiveness of the sand lens in improving the bearing capacity and settlement characteristics of the model footing. In series A, the maximum increase in the bearing capacity due to the presence of the sand lens was 17% whereas in series B, the amount of increase was 24%. The percentage reductions in the settlement for these results were 30% and 46% respectively.
H. Ghiassian, M. Jalili, I. Rahmani, Seyed M. M. Madani,
Volume 11, Issue 4 (Transaction A: December 2013)
Abstract

The concept of Geosynthetic Cellular Systems (GCS) has recently emerged as a new method in construction of breakwaters and coastal protective structures. The method potentially has significant advantages compared to conventional systems from the standpoint of constructability, cost effectiveness, and environmental considerations. This paper presents the results of physical model testing on the hydraulic responses of GCS structures under wave action. A series of model tests were carried out in a wave flume on GCS models with different shapes and soil types, subjected to various wave characteristics. Horizontal wave forces acting on the models were measured at different elevations. The maximum horizontal force in each test was calculated and compared with conventional formula of predicting wave pressure on breakwaters. The results show that Goda’s equation overestimates the hydrodynamic water pressure on these structures. This can be attributed to the influence of seeping water through the GCS models because of relative permeability of the GCS.

Page 1 from 1     

© 2020 All Rights Reserved | International Journal of Civil Engineering

Designed & Developed by : Yektaweb