Search published articles


Showing 4 results for Elahi

Behbahani H., Mohammad Elahi S.,
Volume 1, Issue 1 (September 2003)
Abstract

This Paper is the result of a research project on a pavement management system that was performed by the Transportation Division of Iran University of Science and Technology. Information used in the project was gathered from 20 zones of the Tehran Municipality. Any maintenance and repair system for roads has a number of general and coordinated activities in conjunction with programming, designing, construction, Maintenance, Evaluation, and research on road pavement. Prediction of pavement condition is one of the most important parts of, such system. Prediction models have their application at the network level as well as project level activities. At the network level it is used in predicting the condition for budget programming. While in project level it is used in economical analysis. Many factors have been used in determination of pavement condition. These factors are the design life of the pavement, loading, climatic condition, and the type of road. To be able to plan for future improvements we need to predict the future condition of the pavement. In this paper, factors affecting the prediction of pavement condition are discussed. A model is developed exclusively for Tehran based on the distress data collected.
H. Behbahani, S.m. Elahi,
Volume 4, Issue 1 (March 2006)
Abstract

To properly plan for construction, repair, maintenance, and reconstruction of highways the minimum acceptable roadway condition is needed information. This, along with other pavement management tools, will help select the most desirable roadway alternatives. In this research the minimum acceptable conditions are developed based on an opinion survey of non-technical but high-level decision makers. Roadway roughness, expressed as international roughness index (IRI), is used as the measurement criteria. Because IRI is a widely known, acceptable, and a uniformly measurable index, it is used for the purpose of this research. The minimum IRI values developed here will help managers, planners, and engineers in prioritizing their plans and projects. Iran has a central planning system, hence having a minimum acceptable IRI will help in producing homogeneity in decision making. A questionnaire is sent to top level and influential managementlevel officials who have a decisive input in highway matters. The officials are asked to choose the minimum acceptable service level of different types of roadways and classifications. Naturally, roadways with higher levels of importance would require higher service levels. The answers to the survey questionnaires are investigated to determine a preferred minimum acceptable roadway condition. The IRI is computed using a mechanical device enabling a more uniform data collection. The IRI was first proposed by The World Bank as a standard roughness statistic. Extensive research has proven that the IRI can be related to pavement condition. The result of the opinion survey is investigated to determine the minimum levels acceptable for each category. The responses show distinct preference patterns for most of the roadway types. Survey results are investigated by plotting and analyzing them. Based on road user’s perception of roadway condition using guidelines from AASHTO, the Corp of Engineers, and related research work. The appropriate IRI limits and ranges are determined for Iran’s highways. These values are adjusted to obtain final values for Iran. The result, shown in a table, gives upper and lower IRI values accepted and recommended for Iran’s highways. The result of this research work is specifically useful in developing specifications for new pavement design, accepting new pavement from contractors, pavement management, highway planning, and in roadway life cycle cost analysis decision making. The results are subject to refinement over time.
H. AliElahi, M. Kamalian, J. Asgari Marnani, M. K. Jafari, M. Panji,
Volume 11, Issue 1 (Transaction B: Geotechnical Engineering, May 2013)
Abstract

In this paper, an advanced formulation of a time-domain two-dimensional boundary element method (BEM) is presented and

applied to calculate the response of a buried, unlined, and infinitely long cylindrical cavity with a circular cross-section subjected

to SV and P waves. The applicability and efficiency of the algorithm are verified with frequency-domain BEM examples of the

effect of cylindrical cavities on the site response analysis. The analysis results show that acceptable agreements exist between

results of this research and presented examples. For a shallow cavity, the numerical results demonstrate that vertically incident

SV wave reduces the horizontal components of the motion on the ground surface above the cavity, while it significantly increases

the vertical component for a dimensionless frequency (&eta) of 0.5 and h/a=1.5. The maximum values of normalized displacements

in vertical component of P waves are larger than horizontal component of SV waves for &eta=1.0. For a deeply embedded cavity,

the effect of the cavity on the surface ground motion is negligible for incident SV wave, but it increases the vertical component of

the displacement for incident P wave. Additionally, far and near distances from the center of the cavity show different amplitude

patterns of response due to the cavity effect. Increasing the distance from the center of the cavity, the amplitude of displacement

and the effect of the cavity attenuates significantly.


Hamid AliElahi, Mohammad Adampira,
Volume 14, Issue 4 (Transaction A: Civil Engineering 2016)
Abstract

Investigating the seismic amplification of incident waves induced by subsurface cavities and characterizing its patterns for the ground surface are important in seismology, geophysics and earthquake engineering both in theory and practical application. Nowadays, it has been established that the seismic ground response above subsurface structures can be different from the free-field motion during earthquakes. In this regard, this research studied preliminary results of a numerical parametric study on the seismic response of the ground surface above subsurface cavity. Basically, this study is applied to get new idea to move a step forward in site response analysis which can be used in the seismic microzonation of areas located above underground spaces. For analysis purposes, a numerical time-domain analysis is performed by utilizing a robust numerical algorithm working based on the boundary element method. It is observed that the amplification of the ground surface underlain by a shallow elliptical cavity is increased in long periods. Some preliminary simple relationships and tables are presented which could be used while introducing simple preliminary ideas for modification of the standard design spectra in building codes and seismic microzonation studies.



Page 1 from 1     

© 2019 All Rights Reserved | International Journal of Civil Engineering

Designed & Developed by : Yektaweb