Search published articles

Showing 4 results for Asadi

Saffar Zadeh M., Asadi M.b.,
Volume 2, Issue 2 (June 2004)

In this research, the Integrated Noise Model (INM), has been calibrated to perform the noise pollution evaluation in the vicinity of Mehrabad International Airport (MIA). First a conceptual model was developed to analyze the compatibility of airport noise with the land use based on the most widely accepted noise pollution standards. Second, the data generated from the INM package was compared with real data acquired from the test stations positioned around airport. Finally, the outputs of the calibrated model was compared with the noise pollution standards. The results show that more than 70 percent of the land use in the vicinity of airport are not compatible with the accepted noise levels. The generated noise contours was superimposed on the digital map of the city and the areas which violated the permitted levels was recognized. Moreover, the more noise sensitive facilities such as hospitals, schools, and residential units can be positioned in areas which have the permitted noise levels. The model and the procedure can be used to design new airports. Noise evaluation of existing operational airports can be performed by the model developed in this research.
G. Ghodrati Amiri, A. Asadi,
Volume 7, Issue 4 (December 2009)

Future design procedures for civil structures, especially those to be protected from extreme and blast related

loads, will need to account for temporal evolution of their frequency content. There are, however, several instances

where acceleration time histories are required as seismic input. For example, to determine the ultimate resistance and

to identify modes of structures’ failure, a nonlinear time history analysis is needed. In other cases, acceleration time

histories are required for linear analyses. Many seismic codes require this type of analysis for buildings which have

irregularities. The process of time-frequency analysis made possible by the wavelet transform provides insight into the

character of transient signals through time-frequency maps of the time variant spectral decomposition that traditional

approaches miss. In this paper an approach is examined and a new method for processing the ground motion which is

modeled as a non-stationary process (both in amplitude and frequency), is proposed. This method uses the best basis

search algorithm with wavelet packets. In this approach, the signal is expressed as a linear combination of timefrequency

atoms which are obtained by dilations of the analyzing functions, and are organized into dictionaries as

wavelet packets. Several numerical examples are given to verify the developed models.

A. R. Habibi, Keyvan Asadi,
Volume 12, Issue 1 (Transaction A: Civil Engineering March 2014)

Setback in elevation of a structure is a special irregularity with considerable effect on its seismic performance. This paper addresses multistory Reinforced Concrete (RC) frame buildings, regular and irregular in elevation. Several multistory Reinforced Concrete Moment Resisting Frames (RCMRFs) with different types of setbacks, as well as the regular frames in elevation, are designed according to the provisions of the Iranian national building code and Iranian seismic code for the high ductility class. Inelastic dynamic time-history analysis is performed on all frames subjected to ten input motions. The assessment of the seismic performance is done based on both global and local criteria. Results show that when setback occurs in elevation, the requirements of the life safety level are not satisfied. It is also shown that the elements near the setback experience the maximum damage. Therefore it is necessary to strengthen these elements by appropriate method to satisfy the life safety level of the frames.
Alireza Habibi, Keyvan Asadi,
Volume 15, Issue 4 (Transaction A: Civil Engineering 2017)

One kind of the irregularities in structures, with considerable effect on seismic performance, is setback in elevation that causes large damage especially in the vicinity of the irregularity. The main objective of this research is to propose and develop drift based index to estimate damage to Reinforced Concrete Moment Resisting Frames (RCMRFs) with setback. For this purpose, first, inelastic dynamic time-history analysis is performed on several frames with different types of setbacks subjected to various earthquake records and damage to them is computed by the Park-Ang damage index. Then two relations between the damage and drift are derived by applying irregularity indices to account for setback effects. It is shown that the proposed damage indices are capable to estimate the damage index of setback frames.

Page 1 from 1     

© 2019 All Rights Reserved | International Journal of Civil Engineering

Designed & Developed by : Yektaweb