Search published articles


Showing 55 results for Subject: Geotechnique

Kwang-Suek Oh, Tae-Hyung Kim,
Volume 11, Issue 2 (11-2013)
Abstract

This study was conducted to determine the effect of vibration on the curing and compressive strength of lightweight air-trapped

soil (ATS). ATS is manufactured by mixing cement with water and sand and injecting bubbles into the mixture. It is light as

compared to regular soil, can reduce the weight on the ground, and has high fluidity. If ATS is used at construction sites with

many vibration sources, such as pile driving, blasting, and construction machinery, the effect of vibration needs to be seriously

considered. If a road is expanded using ATS to reduce traffic congestion, the ATS quality may decrease because of vibration

generated by traffic moving on the road. In particular, because ATS contains many air bubbles and needs time for curing, the

effect of vibration can be greater than expected. Therefore, the effect of vibration on ATS was evaluated during the curing process

by conducting unconfined compression tests on samples prepared with different values of variables including vibration velocity,

starting vibration time, and mixing ratio. Vibration velocities of 0.25 and 0.50 cm/s did not greatly affect the strength. However,

vibration velocities of above 2.50 cm/s significantly affected the decrease in strength, and the starting vibration time also had a

clear effect on specimens cured for less than 2 hours.


I. Hosseinzadeh Attar, K. Fakharian,
Volume 11, Issue 2 (11-2013)
Abstract

Pile foundations are frequently used in industrial projects in southwest lowlands of Iran. Although high setup of shaft resistance

is usually reported in the area, no reliable formulation or guidelines are available for considering the increased capacity in design

applications. Therefore, the pile design practices are usually not optimized. The main objective of this paper is presenting a site

specific formulation for setup effects of a utility plant in southwest Iran in which a good database of prestressed concrete driven

piles is available. Fajr-II Petrochemical site in PetZone of Mahshahr accommodating a utility plant is selected as the database of

the current study. The setup factor (A) and the reference time (t0) are evaluated through processing of a relatively large database

of this well-supervised piling project. As the main portion of variations of driven piles capacity with time is related to shaft, only

shaft resistance variations are considered in this research. The shaft capacity variations are derived from signal matching analysis

on PDA tests. Reliability of PDA tests has been confirmed through comparing with the static load test results. Influence of driving

the surrounding piles on setup factor is also investigated. The results show that the average setup factor (A) and the reference time

(t0) of 0.30 and 0.01 day, respectively, are proper values for estimating the long term capacity in this region. Evaluation of the

results indicates that driving 8 piles around the test pile has increased the “A” factor average of 40% resultingin increase of the

shaft capacity about 19% in one month and 22% in one year, in comparison with the tested piles with no surrounding piles driven.


J. Nazari Afshar, M. Ghazavi,
Volume 12, Issue 1 (1-2014)
Abstract

The Stone-column is a useful method for increasing the bearing capacity and reducing settlement of foundation soil. The prediction of accurate ultimate bearing capacity of stone columns is very important in soil improvement techniques. Bulging failure mechanism usually controls the failure mechanism. In this paper, an imaginary retaining wall is used such that it stretches vertically from the stone column edge. A simple analytical method is introduced for estimation of the ultimate bearing capacity of the stone column using Coulomb lateral earth pressure theory. Presented method needs conventional Mohr-coloumb shear strength parameters of the stone column material and the native soil for estimation the ultimate bearing capacity of stone column. The validity of the developed method has been verified using finite element method and test data. Parametric studies have been carried out and effects of contributing parameters such as stone column diameter, column spacing, and the internal friction angle of the stone column material on the ultimate bearing capacity have been investigated.
M. B. Esfandiari Sowmehsaraei, R. Jamshidi Chenari,
Volume 12, Issue 1 (1-2014)
Abstract

Soil reinforced with fiber shows characteristics of a composite material, in which fiber inclusion has a significant effect on soil permeability. Concerning to the higher void ratio of carpet fibers, at first stages it may be expected that an increase in fiber content of the reinforced soil would result in an increase in permeability of the mixture. However, the present article demonstrates that fiber inclusion will decrease the permeability of sand-fiber composite.A series of constant head permeability tests have been carried out to show the effects and consequently, a new system of phase relationships was introduced to calculate the dry mass for the sand portion of the composite. Monte Carlo simulation technique adopted with finite element theory was employed to back calculate the hydraulic conductivity of individual porous fibers from the laboratory test results. It was observed that the permeability coefficient of the porous fibers are orders of magnitude less than the skeletal sand portion due to the fine sand particle entrapment and also the fiber volume change characteristics.
E. Lotfi, S. Delfan, A. Hamidi, H. Shahir, Gh. Fardi,
Volume 12, Issue 1 (1-2014)
Abstract

In saturated soils, heating induces thermal expansion of both grains and the pore fluid. Lower thermal expansion coefficient of aggregates results in the increase of pore pressure and reduction of the effective stress besides subsequent volume changes due to the dissipation of pore pressure and heat transfer. Dissipation of thermally induced pore pressure with time is a coupled thermo-hydro-mechanical (THM) phenomenon, involving gradients of pore pressure and temperature, hydraulic and thermal flows within the mass of soil and changes in the mechanical properties with temperature. The objective of this paper is presentation of a numerical method to determine the effect of temperature on consolidation of clays. In this regard, the finite element code, PISA is used for one dimensional THM analysis of porous media. The analysis performed using both linear elastic and elastoplastic Cam clay models. Modified Cam clay model was applied in elastoplastic analysis. Variation of temperature, displacements and pore pressure determined with time and compared with numerical solutions of other researchers. Also it was indicated that implementation of coupled THM analysis yields better results for displacements compared to the hydro mechanical (HM) one. Application of elastoplastic constitutive model instead of linear elastic one indicated that preconsolidation pressure has an important effect on results of analysis.
A. Eslami, I. Tajvidi, M. Karimpour-Fard,
Volume 12, Issue 1 (1-2014)
Abstract

Three common approaches to determine the axial pile capacity based on static analysis and in-situ tests are presented, compared and evaluated. The Unified Pile Design (UPD), American Petroleum Institute (API) and a SPT based methods were chosen to be validated. The API is a common method to estimate the axial bearing capacity of piles in marine environments, where as the others are currently used by geotechnical engineers. Seventy pile load test records performed in the northern bank of Persian Gulf with SPT profile have been compiled for methods evaluation. In all cases, pile capacities were measured using full scale static compression and/or pull out loading tests. As the loading tests in some cases were in the format of proof test without reaching the plunging or ultimate bearing capacity, for interpretation the results, offset limit load criteria was employed. Three statistical and probability based approaches in the form of a systematic ranking, called Rank Index, RI, were utilized to evaluate the performance of predictive methods. Wasted Capacity Index (WCI) concept was also applied to validate the efficiency of current methods. The evaluations revealed that among these three predictive methods, the UPD is more accurate and cost effective than the others.
C. Vieira,
Volume 12, Issue 1 (1-2014)
Abstract

This paper presents a simplified approach to estimate the resultant force, which should be provided by a retention system, for the equilibrium of unstable slopes. The results were obtained with a developed algorithm, based on limit equilibrium analyses, that assumes a two-part wedge failure mechanism. Design charts to obtain equivalent earth pressure coefficients are presented. Based on the results achieved with the developed computer code, an approximate equation to estimate the equivalent earth pressure coefficients is proposed. Given the slope angle, the backslope, the design friction angle, the height of the slope and the unit weight of the backfill, one can determine the resultant force for slope equilibrium. This simplified approach intends to provide an extension of the Coulomb earth pressure theory to the stability analyses of steep slopes and to broaden the available design charts for steep reinforced slopes with non-horizontal backslopes
H. Shahnazari, M. A. Shahin, M. A. Tutunchian,
Volume 12, Issue 1 (1-2014)
Abstract

Due to the heterogeneous nature of granular soils and the involvement of many effective parameters in the geotechnical behavior of soil-foundation systems, the accurate prediction of shallow foundation settlements on cohesionless soils is a complex engineering problem. In this study, three new evolutionary-based techniques, including evolutionary polynomial regression (EPR), classical genetic programming (GP), and gene expression programming (GEP), are utilized to obtain more accurate predictive settlement models. The models are developed using a large databank of standard penetration test (SPT)-based case histories. The values obtained from the new models are compared with those of the most precise models that have been previously proposed by researchers. The results show that the new EPR and GP-based models are able to predict the foundation settlement on cohesionless soils under the described conditions with R2 values higher than 87%. The artificial neural networks (ANNs) and genetic programming (GP)-based models obtained from the literature, have R2 values of about 85% and 83%, respectively which are higher than 80% for the GEP-based model. A subsequent comprehensive parametric study is further carried out to evaluate the sensitivity of the foundation settlement to the effective input parameters. The comparison results prove that the new EPR and GP-based models are the most accurate models. In this study, the feasibility of the EPR, GP and GEP approaches in finding solutions for highly nonlinear problems such as settlement of shallow foundations on granular soils is also clearly illustrated. The developed models are quite simple and straightforward and can be used reliably for routine design practice.
Q. Q. Zhang, Sh. C. Li, F. Y. Liang, M. Yang, Q. Zhang,
Volume 12, Issue 2 (4-2014)
Abstract

A simplified approach for nonlinear analysis of the load-displacement response of a single pile and a pile group is presented using the load-transfer approach. A hyperbolic model is used to capture the relationship between unit skin friction and pile-soil relative displacement developed at the pile-soil interface and the load-displacement relationship developed at the pile end. As to the nonlinear analysis of the single pile response, a highly effective iterative computer program is developed using the proposed hyperbolic model. Furthermore, determinations of the parameters related to the hyperbolic model of an individual pile in a pile group are obtained considering interactions between piles. Based on the determinations of the parameters presented in the hyperbolic model of an individual pile in a pile group and the proposed iterative computer program developed for the analysis of the single pile response, the conventional load-transfer approach can then be extended to the analysis of the load-settlement response of an arbitrary pile in a pile group. Comparisons of the load-settlement response demonstrate that the proposed method is generally in good agreement with the field-observed behavior and the calculated results derived from other approaches.
C. Gümüşer, A. Şenol,
Volume 12, Issue 2 (4-2014)
Abstract

The total coal and lignite consumption of the thermic power plants in Turkey is approximately 55 million tons and nearly 15 million tons of fly ash is produced. The remarkable increase in the production of fly ash and its disposal in an environmentally friendly manner is increasingly becoming a matter of global concern. Studies for the utilization of fly ash in Turkey are necessary to reduce environmental problems and avoid economical loss caused by the disposal of fly ash. Efforts are underway to improve the use of fly ash in several ways, with the geotechnical utilization also forming an important aspect of these efforts. An experimental program was undertaken to investigate the effects of Multifilament (MF19average) and Fibrillated (F19average) polypropylene fiber on the compaction and strength behavior of CH class soil with fly ash in different proportions. The soil samples were prepared at three different percentages of fiber content (i.e. 0.5%, 1% and 1.5% by weight of soil) and two different percentages of fly ash (i.e. 10% and 15% by weight of soil). A series of tests were prepared in optimum moisture content and laboratory unconfined compression strength tests, compaction tests and Atterberg limits test were carried out. The fiber inclusions increased the strength of the fly ash specimens and changed their brittle behavior into ductile behavior.
M. L. Li, Q. Chun-Xiang, Z. Yong-Hao,
Volume 12, Issue 2 (4-2014)
Abstract

It introduced an innovative bioengineering method of consolidating incompact sand by urea-hydrolysis producing calcite cementation under the inducement of urease producing microbe. In the paper it discussed the effects of cementation methods and time on porosity and mechanical properties of microbe-inspired cementing sand columns. Method A adopted reaction fluid gravitational permeating and external pressing and method B adopted reaction fluid gravitational permeating and outlet intermittent plugging method. 28-day sand columns prepared by method A exhibited stronger mechanical properties than those prepared by method B, considering of the compressive strengths and three-point flexural strength as well. Pore volume fractions of sand columns prepared by method A reduced with an increase in cementation time which represented the bulk densities of sand columns were improved positively with time. The compressive strengths and the flexural strengths of sand columns prepared by method A increased with time. All these improved mechanical properties were attributed to the fact that the increasing amount of microbe inspired calcite precipitation with time consolidated sand columns by filling or bridging in sand gaps.
R. Jamshidi Chenari, P. Pishgah ,
Volume 12, Issue 2 (4-2014)
Abstract

In this technical note, a methodology is introduced for reliability calculation of consolidation settlement based on cone penetration test (CPT) data. The present study considers inherent soil variability which influences consolidation settlements results. To proceed reliability analysis, the measured data of a sample corrected cone tip resistance (􀝍􀯧) is detrended using a quadratic trend and the residuals are assumed to be lognormally distributed random field. Realizations of 􀝍􀯧 is generated by using spatial variability of residuals including standard deviation and the scale of fluctuation. The quadratic trend and the generated residuals are then combined to correlate shear and bulk modulus as input consolidation properties for coupled analysis and subsequently consolidation settlement was calculated by using finite difference method adopted in Monte Carlo simulations. The results of reliability analysis are presented describing the range of possible settlements by considering characteristics of uncertainties involved at the particular site. Number of realizations rendering settlements smaller than the allowable settlement must be such that guarantee proper performance or acceptable reliability index.
Farzin Kalantary, Javad Sadoghi Yazdi, Hossein Bazazzadeh,
Volume 12, Issue 3 (7-2014)
Abstract

In comparison with other geomaterials, constitutive modeling of rockfill materials and its validation is more complicated. This is principally due to the existence of more intricate phenomena such as particle crushing, as well as laboratory test limitations. These issues have necessitated developing more complex constitutive models, with many parameters. Regardless of the type of model, the calibrations of the parameters in such models are considered as one of the most important and challenging steps in the application of the model. Therefore, the need for comprehensive and rapid methods for evaluation of optimum parameters of the models is deemed necessary. In this paper, a Neuro-Fuzzy model in conjunction with Particle Swarm Optimization (PSO) is used for calibration of the twelve parameters of Hierarchical Single Surface (HISS) constitutive model based on the Disturbed State Concept (DSC). The Neuro-fuzzy system is used to provide a high-degree nonlinear regression model between the deviatoric stress and volumetric strain versus axial strain that has been obtained from consolidated drained large scale tri-axial tests on rockfill materials. The model parameters are determined in an iterative optimized loop with PSO and ANFIS such that the equations of DSC/HISS are simultaneously satisfied. Material data used in this study are gathered from the results of large tri-axial tests for two rockfill dams in Iran. It is shown that the proposed method has higher accuracy and more importantly its robustness is exhibited through test predictions. The achieved improvement is substantiated in a comparison with the more widely used "Least-Square" method.
Wen-Chao Huang,
Volume 12, Issue 3 (7-2014)
Abstract

When geogrid reinforcement is used as a treatment method for improving soft subgrade as a roadway foundation, a top layer of subgrade is usually excavated and backfilled with geogrid-reinforced aggregates. This treatment method produces an adequate platform for the planned roadway construction site, where heavy traffic loading is constantly moving. This paper presents a quantitative assessment of subgrade improvement by geogrid reinforcement based on numerical modelling and parametric studies. First of all, the preliminary numerical models were verified by comparing the analysis results with previous studies. Secondly, the major numerical models in this study were assumed to be a simplified simulation of a geogrid-reinforced two-layer system with an aggregate layer above a subgrade layer. The numerical models were applied a quasi-static loading and unloading cycle, in order to monitor the permanent deformation at the surface of the models. Afterwards, thickness of aggregate layer, and subgrade CBR values were varied in order to summarize the outcomes of each case. This approach makes it possible to quantify the effects of geogrid reinforcement and aggregate material in terms of an enhanced California Bearing Ratio (CBR) of a single subgrade clay layer. Results have shown that when the aggregate thickness is up to 450mm, the contribution of enhanced CBR is mostly from aggregate material. However, when the aggregate thickness is about 150mm with a relatively weak subgrade material, the inclusion of geogrid material can contribute about 50% of the enhanced value.
Khaled Farah, Mounir Ltifi, Tarek Abichou, Hedi Hassis,
Volume 12, Issue 3 (7-2014)
Abstract

The purpose of this study is to compare the results of different probabilistic methods such as the perturbation method, Stochastic Finite Element Method (SFEM) and Monte Carlo Method. These methods were used to study the convergence of direct approach for slope stability analysis and are developed for a linear soil behavior. In this study, two dimensional random fields are used and both the First Order Reliability Method (FORM) and Limited Step Length Iteration Method (LSLIM) have been adopted to evaluate the reliability index. The study found that the perturbation method of the second order is easy to apply using the field’s theory because accuracy is reached even with different coefficients of variation of input variables, while the spectral finite element method yields accurate results only for high levels of solution development.
Sandro Machado, Mehran Karimpour-Fard, Miriam Carvalho, Orencio Villar, Atila Caldas,
Volume 12, Issue 3 (7-2014)
Abstract

Municipal Solid Waste (MSW) materials are among the most complicated materials for geotechnical engineering as their composition includes an organic fraction, which suffers loss of mass over time, and a fibrous part, which acts as reinforcement, governing the MSW shear behavior. Because of these characteristics MSW can be described as a viscous material which shows time dependent behavior. Since the decomposition of MSW leads to gas and leachate generation, the changes in the MSW’s mechanical behavior could be linked to gas emission and leachate production from landfills. This paper deals with the characteristics of MSW materials to provide the necessary data for efficient and safe landfill design, construction and operation. The MSW physical characteristics such as composition, water content and organic content at varying ages, field and laboratory measurements of methane generation and leachate production, MSW compressibility behavior and its shear strength are covered. By presenting these data the authors hope to promote a better understanding of the mechanical behavior of MSW and provide useful data for use in landfill management tasks.
Nader Shariatmadari, Amir Hossein Sadeghpour, Farshid Razaghian,
Volume 12, Issue 3 (7-2014)
Abstract

This research shows the results of studies carried out to define and analyze the effect of aging on MSW behavior of Kahrizak Landfill, the biggest landfill in Iran. Studied samples consisted of fresh samples and also aged ones with 5.5, 14 and 21 years of age which were obtained by mechanical excavators in aged burial locations. Analyzing variation in MSW components illustrates that paste fraction of MSW decreases due to aging process while fibers show a rising trend. Also the moisture content and the organic content of MSW reduce below half of the initial values while the degree of decomposition (DOD) increase up to almost 60% after 14 years. These variations over the time are significantly related to the burying methods and environmental condition of burying location. Shear strength behavior of MSW material was analyzed by some CU tests using large scale triaxial apparatus (D=150mm, H=300mm) on remolded MSW specimens. General observations depict that with an increase in strain level, loading rises without any peak point on stress-strain curves. Fresh samples represent the lowest shear strength followed by 21, 14 and 5.5 year-old samples respectively. There is a direct relationship between fiber content and shear strength. Internal friction angle of aged samples decreases in comparison with fresh ones while cohesion has an inverse trend and rises over the time. According to the effect of burying condition on MSW characteristics, it seems that DOD factor is a more appropriate factor than age in order to analyze long-term behavior of MSW.
S.h.r. Kargar, H. Shahnazari, H. Salehzadeh,
Volume 12, Issue 4 (12-2014)
Abstract

In this study, a researching program is conducted by cyclic triaxial test to determine the post-cyclic behavior of Bushehr carbonate sand retrieved from the north of the Persian Gulf, under anisotropic consolidation at 200 kPa confining pressure. The article compares the post-cyclic monotonic strength and excess pore water pressures generated after the test with the pre-cyclic monotonic results. The results attest to the existence of a relationship between CSR (Cyclic Stress Ratio) and the frequency of failure cycles. The article also investigates the relationship between the amount of excess pore pressures generated during both the cyclic and post-cyclic loading, revealing an increase in the post-cyclic strength and stiffness of sand retrieved from Bushehr. Also the effect of multi stages cyclic loading, density, pore pressure and stain history in post cyclic strength and stiffness is evaluated. The increasing in post cyclic strength and stiffness depends on excess pore pressure generated during cyclic loading and stain history. This article also reveals that a distinct trend in the relation between post cyclic behavior and crushing value does not exist at lower confining pressure.


M. Derakhshandi, H. R. Pourbagherian, M. H. Baziar, N. Shariatmadari, A. H. Sadeghpour,
Volume 12, Issue 4 (12-2014)
Abstract

In this study, the mechanical behavior of Vanyar dam was evaluated at the end of construction. A two-dimensional numerical analysis was conducted based on a finite element method on the largest cross-section of the dam. The data recorded by the instruments located in the largest cross-section were compared with the results of the numerical analysis at the place of instruments. The settlement, pore water pressure, and total vertical stress were the parameters used for evaluating the dam behavior at the end of construction. The results showed that the settlements obtained from the numerical analysis were in reasonable agreement with the data recorded by the instruments, which proved that the numerical analysis was implemented based on realistic material properties. In addition, the difference between the instruments and the numerical analysis in terms of total vertical stresses was discussed by focusing on the local arching around the pressure cells. Furthermore, the arching ratios were calculated based on the results of the numerical analysis and the data recorded by the instruments. Moreover, the pore water pressures and total vertical stresses, recorded by piezometers and pressure cells, respectively, were the two parameters utilized for evaluating the hydraulic fracturing phenomena in the core. The results demonstrated that the maximum settlement obtained from the numerical analysis was 1 m, which corresponded to 46 m above the bedrock on the core axis. The recorded data in the core axis indicated that maximum settlement of 0.83 m happened 40 m above the bedrock. In addition, maximum pore water pressure ratio recorded by the instruments (Ru =0.43) was more than that obtained from the numerical analysis (Ru =0.26) this difference was due to the local arching around the pressure cells. Furthermore, the arching ratios in Vanyar dam were found to be 0.83 to 0.90. In general, the results revealed that the dam was located on a safe side in terms of critical parameters, including settlement and hydraulic fracturing. In addition, results of the numerical analysis were consistent with those provided by the monitoring system


M. Karimpour Fard, N. Shariatmadari, M. Keramati, H. Jafari Kalarijani,
Volume 12, Issue 4 (12-2014)
Abstract

Due to the existence of fibrous materials such as plastic fragments, the strength anisotropy of Municipal Solid Waste

(MSW) materials is the main source of differences between their mechanical response in direct shear and triaxial apparatus.

As an extension of earlier research on the mechanical behavior of MSW using a large traixail apparatus, results presented in

Shariatmadari et al. [1] and Karimpour-Fard et al. [2], the current study was programmed and executed. MSW samples were

tested using a computer controlled large shear box apparatus with normal stress levels ranging between 20 to 200 kPa. The

effect of fiber content, fiber orientation, aging and shearing rate on the response of MSW were addressed. The results showed

that shear strength of MSW increases with normal stress, although, in spite of the presence of reinforcement elements in MSW

and unlike the results from triaxial tests, no strain hardening could be observed in their mechanical response. An increase in

the shear strength of MSW was observed with increasing the shearing rate. Increasing the shearing rate from 0.8 to 19

mm/min, enhanced the shear strength of samples from 16 to 27% depending on the shear displacement level. Although, the

same trend was investigated in traixial tests, but lower rate-sensitivity in the mechanical response of MSW in direct shear tests

were observed.

Unlike the results of triaxial tests with aging process, mobilized shear strength level of MSW samples tested under direct

shearing decreased comparing fresh samples. It was also observed that altering the fiber content and their orientation could

affect the mechanical response and shear strength of the MSW. Additionally, there is an optimum fiber angle in MSW which

yields the highest level of shearing strength.



Page 1 from 3    
First
Previous
1
 

© 2018 All Rights Reserved | International Journal of Civil Engineering

Designed & Developed by : Yektaweb