Search published articles


Showing 2 results for Wave Overtopping

F. Hajivalie, A. Yeganeh Bakhtiary,
Volume 9, Issue 1 (3-2011)
Abstract

In this paper, a two-dimensional Reynolds Averaged Navier-Stokes (RANS) model is developed to simulate the shoaling, breaking and overtopping of a solitary wave over a vertical breakwater. Turbulence intensity is described by using a k turbulence closure model and the free surface configuration is tracked by Volume Of Fluid (VOF) technique. To validate the numerical model the simulation results is compared with the Xie (1981) experimental data and a very good agreement between them is observed. The results revealed that wave height and wave energy decrease considerably during the reflection from vertical wall, which illustrates a considerable energy lost during the impaction and wave overtopping process. The turbulence production during the broken wave interaction with vertical breakwater is very significant consequently the vertical breakwater undergoes sever turbulent and dynamic drag force.


Duc Do Minh, Mr. Hieu Nguyen Minh,
Volume 15, Issue 3 (5-2017)
Abstract

Climate change and global warming have led to severe typhoons and sea level rise (SLR) which may threat the stability of coastal structures. However, countermeasures to enhance coastal protection against SLR and severe typhoons have not appropriately considered. The Hai Hau coast with 33.3 km of sea dikes is located in the Red River delta of Vietnam. Herein, coastal dikes have collapsed twice over the last 30 years, which lead to about 1.5 km of coastline retreat. This paper aims to assess quantitative impacts of SLR on sea dike stability. Change in pore water pressure (PWP) in the dikes was monitored by piezometers. Distribution of PWP at different tide levels was then used to calculate factors of safety (Fs) of inner and outer slopes. Projected SLR until 2100 will reduce Fs of the outer slopes, but sea dikes have no problem with sliding stability. The main threats of SLR to sea dike stability are indirect impacts such as accelerated erosion, scouring, and wave overtopping-induced soil erosion on the inner slopes. Troughs of sea dikes in Hai Hau coast could fail in 6–10 years due to accelerated coastal erosion. A solution of multiple protections to adapt to SLR in Hai Hau coast was proposed which includes conventional structures (i.e. dike, revetment, groins, and mangrove) together with geotubes as submerged breakwaters and vetiver grass.



Page 1 from 1     

© 2019 All Rights Reserved | International Journal of Civil Engineering

Designed & Developed by : Yektaweb