Search published articles

Showing 6 results for Toughness

H. Oucief, M.f. Habita, B. Redjel,
Volume 4, Issue 2 (6-2006)

In most cases, fiber reinforced self-compacting concrete (FRSCC) contains only one type of fiber. The use of two or more types of fibers in a suitable combination may potentially not only improve the overal properties of self-compacting concrete, but may also result in performance synergie. The combining of fibers, often called hybridization, is investigated in this paper for a cimentetious matrix. Control, single, two fibers hybrid composites were cast using different fiber type steel and polypropylene with different sizes. Flexural toughness tests were performed and results were extensively analysed to identify synergy, if any, associated with various fiber combinations. Based on various analysis schemes, the paper identifies fiber combinations that demonstrate maximum synergy in terms of flexural toughness.
M. Khorami, J. Sobhani,
Volume 11, Issue 4 (12-2013)

Worldwide, asbestos fibers utilized in fiber cement boards, have been recognized as harmful materials regarding the public health and environmental pollutions. These concerns motivate the researchers to find the appropriate alternatives to substitute the asbestos material towards the sustainability policies. In this paper, the applicability of asbestos replacement with three types of agricultural waste fibers, including bagasse, wheat and eucalyptus fibers were experimentally investigated. To this end, the flexural behaviour and microstructure of cement composite boards made by addition of 2 % and 4 % of waste agricultural fibers in combination with and without 5 % replacement of silica fume by mass of cement were evaluated. The results of this study attested the applicability of utilized waste agricultural fibers in production of cement composite boards by improving the flexural and energy absorption characteristics, more or less, depending on the type of fibers. Moreover, it is found that application of silica fume in production of cement composite boards led to an increase in flexural strength.
R. Perumal, K. Nagamani,
Volume 12, Issue 4 (12-2014)

An experimental study on the impact performance of silica fume concrete and steel fiber reinforced concrete at 28 days and 56 days under the action of repeated dynamic loading was carried out. In this experimental investigation, w/cm ratios of 0.4 and 0.3, silica fume replacement at 10% and 15% and crimped steel fibers with an aspect ratio of 80 were used. Results indicated that addition of fibers in high-performance concrete (HPC) can effectively restrain the initiation and propagation of cracks under stress, and enhance the impact strengths, toughness and ductility of HPC. Pulse velocity test was carried out for quality measurements of high-performance steel fiber reinforced concrete. Steel fibers were observed to have significant effect on flexural strength of concrete. The maximum first crack strength and ultimate failure strength at 28 days were 1.51 times and 1.78 times, respectively at 1.5% volume fraction to that of HPC. Based on the experimental data, failure resistance prediction model was developed with correlation coefficient (R) = 0.96 and absolute variation determined is 1.82%.
Hynn-Ki Choi,
Volume 14, Issue 6 (9-2016)

Replacement of existing unreinforced masonry (URM) walls, commonly used as a non-structural member in apartments, with new reinforced concrete (RC) components has been used as a reliable method when remodeling is carried out. However, special care needs to be taken when URM walls are removed not to waste construction time and materials. Therefore, retrofitting existing URM walls can be deemed a better solution rather than replacing URM walls with RC ones. Using shotcrete is one of retrofitting techniques of URM walls. However, using normal shotcrete cannot improve adequate ductility and may cause brittle failure at a wall-frame or slab connection. Therefore, new materials such as engineered cementitious composite (ECC) and ultra-high performance concrete (UHPC) have emerged to resolve the problem of normal shotcrete by increasing ductility and toughness of retrofitting materials. In this study, sprayed ECC was used to increase both strength and ductility of existing URM walls. The results of two retrofitted URM walls under lateral quasi-static loading were compared to non-retrofitted one. One strengthened wall, retrofitted masonry wall (RTM)-ECC, was just sprayed and anchored to a wall base. Another strengthened wall, RTM-ECC-WM, was the same as RTM-ECC except for addition of wire mesh. The retrofitted specimens showed significant increase of strength, ductility, and energy dissipation capacity in comparison with the control one. In addition, RTM-ECC-WM indicated better strength degradation due to the load transferring effect of wire mesh than RTM-ECC.

Hasan Dilbas, Özgür Çakır, Mesut Şimşek,
Volume 15, Issue 2 (3-2017)

The determination of the parameters of concrete (i.e., elasticity modulus, tensile strength) is very crucial task in material engineering. For this purpose, in general, structural codes propose some empirical formulas to estimate the parameters of materials and is useful for designers rather than the experimental process. However, the estimated results usually vary for different standards. Hence, this research paper aims to compare the elasticity modulus formulas considering six standards (TS 500, ACI 318M-05, CSA A23.3-04, SP 52-101-2003, EN 1992-1-1 and AS-3600-2001) with experimental elasticity modulus test results. In the evaluation of the results, the TS 500 and EN-1992-1-1 overestimate the elasticity modulus and the SP-52-101-2003 estimates the values more close to experimental results. In addition, a new equation for modulus of elasticity including the compressive strength and the density is derived for RAC. Also, in this paper energy capacities of concretes (elastic energy capacity, plastic energy capacity and toughness) are evaluated considering compressive strength test data. As a result, according to energy capacities of concretes, the proportions 5% silica fume (SF) and 30% recycled aggregate are proposed as the optimum ratio.

Ms Ladan Hatami, Dr. Masoud Jamshidi,
Volume 15, Issue 5 (7-2017)

Colored self-compacting mortar (C-SCM) is a novel cementitious product that has been recently used in decoration and rehabilitation and has improved aesthetic quality of architectural constructions. C-SCM is susceptible to strength decrease due to excessive pigment presence in the mixture. Optimum pigment content with respect to color intensity and mechanical performance is an important matter that should be determined to prevent mortar failure after construction. In this research, two inorganic pigments in production of colored self-compacting mortar were utilized. The impact of titanium dioxide (TiO2) and iron hydroxide (FeO(OH)) contents on behavior of C-SCMs were investigated in white and gray cement matrixes. Experiments included measurements of compressive strength of mortar cubes and cylinders, flexural strength and colorimetric properties. Analyses on compressive and flexural toughness were applied, as well. It was concluded that pigment content in mix design of colored self-compacting mortar could be optimized with regard to color quality in surface and mechanical strength of the product. Results implied that 5 and 2% of titanium dioxide were the saturation points of color and strength respectively and iron hydroxide at 10% was unsurpassed in C-SCMs containing white cement. Application of both pigments in gray SCMs caused the saturation points of color and strength to occur at 10 and 2%, respectively.

Page 1 from 1     

© 2019 All Rights Reserved | International Journal of Civil Engineering

Designed & Developed by : Yektaweb