Search published articles

Showing 13 results for Steel Frame

H. Moharrami, S.a. Alavinasab,
Volume 4, Issue 2 (6-2006)

In this paper a general procedure for automated minimum weight design of twodimensional steel frames under seismic loading is proposed. The proposal comprises two parts: a) Formulation of automated design of frames under seismic loading and b) introduction of an optimization engine and the improvement made on it for the solution of optimal design. Seismic loading, that depends on dynamic characteristics of structure, is determined using "Equivalent static loading" scheme. The design automation is sought via formulation of the design problem in the form of a standard optimization problem in which the design requirements is treated as optimization constraints. The Optimality Criteria (OC) method has been modified/improved and used for solution of the optimization problem. The improvement in (OC) algorithm relates to simultaneous identification of active set of constraints and calculation of corresponding Lagrange multipliers. The modification has resulted in rapid convergence of the algorithm, which is promising for highly nonlinear optimal design problems. Two examples have been provided to show the procedure of automated design and optimization of seismic-resistant frames and the performance and capability of the proposed algorithm.
F. R. Rofooei, N. K. Attari, A. Rasekh, A.h. Shodja,
Volume 4, Issue 3 (9-2006)

Pushover analysis is a simplified nonlinear analysis technique that can be used to estimate the dynamic demands imposed on a structure under earthquake excitations. One of the first steps taken in this approximate solution is to assess the maximum roof displacement, known as target displacement, using the base shear versus roof displacement diagram. That could be done by the so-called dynamic pushover analysis, i.e. a dynamic time history analysis of an equivalent single degree of freedom model of the original system, as well as other available approximate static methods. In this paper, a number of load patterns, including a new approach, are considered to construct the related pushover curves. In a so-called dynamic pushover analysis, the bi-linear and tri-linear approximations of these pushover curves were used to assess the target displacements by performing dynamic nonlinear time history analyses. The results obtained for five different special moment resisting steel frames, using five earthquake records were compared with those resulted from the time history analysis of the original system. It is shown that the dynamic pushover analysis approach, specially, with the tri-linear approximation of the pushover curves, proves to have a better accuracy in assessing the target displacements. On the other hand, when nonlinear static procedure seems adequate, no specific preference is observed in using more complicated static procedures (proposed by codes) compared to the simple first mode target displacement assessment.
M. Mazloom, A.a. Mehrabian,
Volume 4, Issue 4 (12-2006)

The objective of this paper is to present a new method for protecting the lives of residents in catastrophic earthquake failures of unreinforced masonry buildings by introducing some safe rooms within the buildings. The main idea is that occupants can seek refuge within the safe rooms as soon as the earthquake ground motions are felt. The information obtained from the historical ground motions happened in seismic zones around the globe expresses the lack of enough safety of masonry buildings against earthquake. For this potentially important reason, an attempt has been made to create some cost-effective seismic-resistant areas in some parts of the existing masonry buildings, which are called safe rooms. The practical method for creating these areas and increasing the occupant safety of the buildings is to install some prefabricated steel frames in some of their rooms or in their halls. These frames do not carry any service loads before earthquake. However, if a near field seismic event happens and the load bearing walls of the building destroy, some parts of its floors, which are in the safe areas, will fall on the roof of the installed frames consequently, the occupants who have sheltered in the safe rooms will survive. This paper expresses the experimental and theoretical work executed on the steel structures of the safe rooms for bearing the shock and impact loads. Finally, it was concluded that both the strength and displacement capacity of the steel frames were adequate to accommodate the distortions generated by seismic loads and aftershocks properly.
M. Mazloom, A.a. Mehrabian,
Volume 7, Issue 4 (12-2009)

Pullback test has no scrupulous theoretical establishment. It is based on the hypothesis that the response of

the structure can be related to the response of an equivalent single degree-of-freedom (SDOF) system. This implies that

the response is controlled by a single mode. In fact, the steel frame of each safe room, which is introduced within the

unreinforced masonry buildings for protecting the lives of residents in catastrophic earthquake failures, contains a

SDOF structural system. In pullback test, the steel frame carries its gravity load first, and then it will be pushed under

an incremental lateral roof displacement pattern, which is imposed to its center of mass. This paper expresses the

results of 13 pullback tests executed by the authors on the steel frames of safe rooms. The results show that pullback

test is a practical method for seismic performance evaluation of safe rooms. Also the performance of these frames

located in a collapsing three storey masonry building is presented with favorable conclusions. In fact, the results of

pullback test of the safe room located at the ground-floor level were compared with the requirements of Iranian code

for seismic resistant design and it was concluded that the steel frame had an acceptable performance against seismic


A. Kaveh, N. Farhoodi,
Volume 8, Issue 3 (9-2010)

In this paper, the problem of layout optimization for X-bracing of steel frames is studied using the ant system (AS). A new design method is employed to share the gravity and the lateral loads between the main frame and the bracings according to the requirements of the IBC2006 code. An algorithm is developed which is called optimum steel designer (OSD). An optimization method based on an approximate analysis is also developed for layout optimization of braced frames. This method is called the approximate optimum steel designer (AOSD) and uses a simple deterministic optimization algorithm leading to the optimum patterns and it is much faster than the OSD. Several numerical examples are treated by the proposed methods. Efficiency and accuracy of the methods are then discussed. A comparison is also made with Genetic algorithm for one of the frames.

M. Mahmoudi, M. Zaree,
Volume 9, Issue 1 (3-2011)

Inelastic deformation of structural components is generally acceptable in seismic design. In such behavior, the strength of structures increases while plastic hinges are formed in members frequently. The strength revealed during the formation of plastic hinges is called "overstrength". Overstrength is one of the important parameters in the seismic design of structures. The present study tries to evaluate the overstrength of the concentrically steel braced frames (CBFs), considering reserved strength, because of members post-buckling. As such, a static nonlinear (pushover) analysis has been performed on the model buildings with single and double bracing bays, different stories and brace configurations (chevron V, invert Vand X-bracing). It has been realized that the number of bracing bays and the height of buildings have a low effect on reserve strength due to brace post-buckling. However, these parameters have a profound effect on the overstrength factor. These results indicate that the overstrength values for CBFs, proposed in seismic design codes, need to be modified.

M. Mohamamdi Ghazimahalleh, R. M. Ghazimahalleh,
Volume 11, Issue 3 (9-2013)

A new type of infilled frame has been recently proposed. It has a frictional sliding fuse, horizontally installed at the mid-height of the infill. It has already shown that such infilled frames have higher ductility, strength and damping ratio as well as more enhanced hysteresis cycles, compared with regular infilled frames. This experimental paper is focused on the influence of gravitational load on the behaviour of the fused infill panel. Furthermore, a repairing method in which damaged specimens are repaired by grout plasters is also studied. The results show that the gravitational load, applied to the surrounding frame of the infill for the dead or live loads, arises the ultimate strength of the fused infill specimens. It is also shown that repairing the failed specimen by grout was so efficient that the repaired specimen had greater strength than the original one. However, top gap, between the infill and the top beam of the enclosing frame should be absolutely avoided, because it decays the ultimate strength.
A. Gholizad, P. Kamrani Moghaddam,
Volume 12, Issue 1 (3-2014)

High performance and reliability of refurbish able knee braced steel frames has been confirmed in previous researches trying to get an optimal design for its configuration. Buckling of diagonal member which affects the hysteretic behavior of KBF under cyclic loadings has not been foreseen in previous evaluations of this system. This deficiency can be improved by utilization of adjustable rotary friction damper device (FDD) as knee element. Diagonal element buckling can be prevented considering a suitable value for FDD sliding threshold moment Mf. Lower values of Mf Lower energy dissipation rate in FDD and this leads to an optimization problem. Nonlinear time history analyses have been performed in addition to lateral cyclic loading analyses to evaluate the response of single story KBF subjected to seismic excitation. Optimal Mf in FDD has been chosen according to these analyses results. Roof displacement and acceleration, base shear and diagonal element’s buckling status have been compared in optimally designed KBF and FDD utilized KBF (FKBF) with different configurations. Nonlinear dynamic analyses have been performed for one, four, eight and twelve story frames under different seismic records with several PGAs. More than 60% displacement response reduction has been earned for the FKBF without considerable increase in base shear.
A. R. Habibi, Keyvan Asadi,
Volume 12, Issue 1 (3-2014)

Setback in elevation of a structure is a special irregularity with considerable effect on its seismic performance. This paper addresses multistory Reinforced Concrete (RC) frame buildings, regular and irregular in elevation. Several multistory Reinforced Concrete Moment Resisting Frames (RCMRFs) with different types of setbacks, as well as the regular frames in elevation, are designed according to the provisions of the Iranian national building code and Iranian seismic code for the high ductility class. Inelastic dynamic time-history analysis is performed on all frames subjected to ten input motions. The assessment of the seismic performance is done based on both global and local criteria. Results show that when setback occurs in elevation, the requirements of the life safety level are not satisfied. It is also shown that the elements near the setback experience the maximum damage. Therefore it is necessary to strengthen these elements by appropriate method to satisfy the life safety level of the frames.
Hamed Tajammolian, Faramarz Khoshnoudian, Nasim Partovi Mehr,
Volume 14, Issue 8 (12-2016)

This study is devoted to investigate the effects of mass eccentricity in seismic responses of base-isolated structures subjected to near field ground motions. Superstructures with 3, 6 and 9 stories and aspect ratios equal to 1, 2 and 3 have been idealized as steel special moment frames resting on a reasonable variety of Triple Concave Friction Pendulum (TCFP) bearings considering different period and damping ratios for the isolators. Three-dimensional linear superstructure mounted on nonlinear isolators are subjected to 3 components of near-field ground motions. Under 25 near-field ground motions, effects of mass eccentricity on the main system parameters are studied. These parameters are selected as the main engineering demands including maximum isolator displacement and base shear as well as peak superstructure acceleration. The results indicate that the mass eccentricities has not a remarkable effect on isolator displacement. In contrary to displacement, torsional effect of mass eccentricity raise the base shear up to 1.75 times in a three-story superstructure. Additionally, mass eccentricity can amplify the roof acceleration of a nine-story model approximately 3 times in comparison with a symmetric superstructure. It is also concluded that eccentricity in the direction of the subjected earthquake has the most impact on base shear while the isolator displacement and roof acceleration has mostly influenced by the eccentricity perpendicular to the earthquake path.

Alireza Habibi, Ehsan Jami,
Volume 15, Issue 2 (3-2017)

The seismic performance levels are discrete damage states selected from among the infinite spectrum of possible damage states that buildings could experience as a result of earthquake response. The observation of building damage during strong motion earthquakes showed that correlation of structural damage with a single parameter such as peak ground acceleration or the total seismic duration is low while peak ground acceleration is often used as a main seismic parameter to evaluate seismic performance of structures. Main objective of this study is to determine the relationship between several seismic acceleration parameters and the Target Displacement (TD) of steel frame structures, which is an important parameter to identify performance levels. For this purpose, first, nonlinear analysis is performed on the SAC 3- and 9-story frames subjected to several far-field earthquakes and then target displacements and seismic parameters are calculated for each structure.The relationship between the target displacement and seismic parameters is evaluated in the form of correlation coefficient. It is shown that PGA has poor correlation with the target displacement. On the other hand, HOUSNER intensity, spectral pseudo-acceleration, spectral pseudo-velocity and peak ground velocity exhibit strong correlation with TD.

Jalal Akbari , Mohammad Sadegh Ayubirad ,
Volume 15, Issue 2 (3-2017)

From practical point of view, optimum design of structures under time variable loadings faces many challenges. Issues such as time-dependent behavior of constraints and the computational costs of the gradients could be mentioned. In order to prevent such difficulties, in this paper, response spectrum method has been utilized instead of applying direct time history method. Additionally, seismic design of structures is defined as a design for a specific response spectra not for an individual acceleration time history. Furthermore, here, in order to guarantee the global optimal designs, the obtained results from gradient-based method are compared with those from the discrete optimization technique (Genetic algorithm). As well, the P-Delta effects are considered in a seismic analysis. In addition, many practical constraints according to the Iranian national building code (NBC) are included in the optimization problem. The developed MATLAB based computer program is utilized to solve the numerical examples of low, intermediate and relatively high-rise braced and un-braced steel frames.

Farshad Homaei, Hamzeh Shakib, Masoud Soltani,
Volume 15, Issue 4 (6-2017)

In this paper, the probabilistic seismic performance of vertically irregular steel buildings, considering soil-structure interaction effects, is evaluated. Various irregular distributions of structural properties, including mass, stiffness and strength along the height of three-dimensional moment resisting steel frames were intended. The finite element model of soil medium was created with solid elements below the structure. The nonlinear material behavior of soil was considered as well. Nonlinear incremental dynamic analysis was performed to evaluate the flexible-base structural performance in the framework of probabilistic performance-based earthquake engineering. According to the median curves of intensity-demand of structures, it is concluded that non-uniform height-wise distribution of lateral resistance properties of steel structures varies the displacement demand and the seismic capacity of the irregular frames, compare to the regular structure. The capacity variation of most irregular frames is more obvious at the nonlinear phase of structural behavior. Due to the foundation flexibility, the damage concentration raises in the bottom floor and the irregularity increase the seismic demands of the lower floors of the system. Among all the irregular steel frames, the average increase of the displacement demand and reduction of the seismic capacity are maximal for the strength and concurrent variation of stiffness and strength irregularity models, respectively. Additionally, mass irregularity shows minor influence in the seismic demand and capacity variations of the steel frames. The predominant influence of stiffness and strength irregularities (soft and weak story) is observed in reduction of the structural ductility factor and the mean annual frequency of exceeding limit states.

Page 1 from 1     

© 2019 All Rights Reserved | International Journal of Civil Engineering

Designed & Developed by : Yektaweb