Search published articles


Showing 7 results for Reinforced Concrete Structures

Kabir Sadeghi,
Volume 9, Issue 3 (9-2011)
Abstract

An energy based damage index based on a new nonlinear Finite element (FE) approach applicable to RC structures subjected to cyclic, earthquake or monotonic loading is proposed. The proposed method is based on the evaluation of nonlinear local degradation of materials and taking into account of the pseudo-plastic hinge produced in the critical sections of the structure. A computer program is developed, considering local behavior of confined and unconfined concretes and steel elements and also global behavior and damage of reinforced concrete structures under cyclic loading. The segments located between the pseudoplastic hinges at critical sections and the inflection points are selected as base-models through simulation by the proposed FE method. The proposed damage index is based on an energy analysis method considering the primary half-cycles energy absorbed by the structure during loading. The total primary half-cycles absorbed energy to failure is used as normalizing factor. By using the proposed nonlinear analytical approach, the structure's force-displacement data are determined. The damage index is then calculated and is compared with the allowable value. This damage index is an efficient means for deciding whether to repair or demolish structures after an earthquake. It is also useful in the design of new structures as a design parameter for an acceptable limit of damage defined by building codes.  The proposed approach and damage index are validated by results of tests carried out on reinforced concrete columns subjected to cyclic biaxial bending with axial force.


R. Abbasnia, A. Holakoo,
Volume 10, Issue 3 (9-2012)
Abstract

One important application of fiber reinforced polymer (FRP) is to confine concrete as FRP jackets in seismic retrofit process

of reinforced concrete structures. Confinement can improve concrete properties such as compressive strength and ultimate axial

strain. For the safe and economic design of FRP jackets, the stress-strain behavior of FRP-confined concrete under monotonic

and cyclic compression needs to be properly understood and modeled. According to literature review, it has been realized that

although there are many studies on the monotonic compressive loading of FRP-confined concrete, only a few studies have been

conducted on the cyclic compressive loading. Therefore, this study is aimed at investigating the behavior of FRP-confined

concrete under cyclic compressive loading. A total of 18 cylindrical specimens of FRP-confined concretewere tested in uniaxial

compressive loading with different wrap thickness, and loading patterns. The results obtained from the tests are presented and

examined based on analysis of test results predictive equations for plastic strain and stress deterioration were derived. The

results are also compared with those from two current models,comparison revealed the lack of sufficient accuracy of the current

models to predict stress-strain behavior and accordingly some provisions should be incorporated.


R. Abbasnia, A. Farsaei,
Volume 11, Issue 3 (9-2013)
Abstract

Corrosion of reinforcing steel and other embedded metals is the main cause of severe deterioration in reinforced concrete structures which subsequently imposes adverse effects on ultimate and serviceability limit state performance of the whole structure. In this paper, a new corrosion detection method for reinforced concrete beams, based on wavelet analysis is presented. To evaluate the capability and efficiency of the method, a simply supported RC beam was modeled in 3-D taking into account the behaviors of concrete, steel and bond degradation. Deflection profile and mode shapes were extracted numerically and analyzed by wavelet transform. From the findings of the modeling, it can be concluded that this wavelet-based method is capable of detecting corrosion at its earliest stage. It is also concluded that both discrete and continuous wavelet transforms can be used and mother wavelet type has no significant effect on the results.
K. Sadeghi,
Volume 12, Issue 3 (9-2014)
Abstract

An analytical nonlinear stress-strain model and a microscopic damage index for confined and unconfined concretes together with a macroscopic damage index for reinforced concrete (RC) structures under cyclic loading are proposed. In order to eliminate the problem of scale effect, an adjustable finite element computer program was generated to simulate RC structures subjected to cyclic loading. By comparing the simulated and experimental results of tests on the full-scale structural members and concrete cylindrical samples, the proposed stress-strain model for confined and unconfined concretes under cyclic loading was accordingly modified and then validated. The proposed model has a strong mathematical structure and can readily be adapted to achieve a higher degree of precision by modifying the relevant coefficients based on more precise tests. To apply the proposed damage indices at the microscopic and macroscopic levels, respectively, stress-strain data of finite elements (confined and unconfined concrete elements) and moment-curvature data of critical section are employed. The proposed microscopic damage index can easily be calculated by using the proposed simple analytic nonlinear stress-strain model for confined and unconfined concretes. The proposed macroscopic damage index is based on the evaluation of nonlinear local degradation of materials and taking into account the pseudo-plastic hinge produced in the critical section of the structural element. One of the advantages of the macroscopic damage index is that the moment-curvature data of the critical section is sufficient in itself and there is no need to obtain the force-displacement data of the structural member.
Raja Rizwan Hussain, M. Wasim, M. A. Baloch,
Volume 13, Issue 1 (3-2015)
Abstract

This paper aims at finding the long term coupled effect of high temperature and constant high relative humidity on the corrosion rehabilitated patches of chloride contaminated steel reinforced concrete. This paper is an extension of previous research in which the authors experimentally corroborated re-corrosion in the repaired reinforced concrete (RC) patches in the form of macro-cells. In previous research, the coupled effect was investigated by laboratory controlled experimentation at varying temperature of 30, 40 and 50°C and a high ambient relative humidity of 85% in environmental control chambers for duration of one year. The specimens were prepared having total chloride concentration in mixing water 3% and 5 % by mass of binder. In this present research paper, the two year results of the same specimens are presented to get a deep insight of the long term phenomenon of macro-cell corrosion under the coupled effect of high temperature and humidity on repaired RC patches.
Guray Arslan, Muzaffer Borekci, Muzaffer Balci, Melih Hacisalihoglu,
Volume 14, Issue 3 (4-2016)
Abstract

The contribution of concrete to inelastic deformation capacity and shear strength of reinforced concrete (RC) columns failing in shear has been investigated extensively by various researchers. Although RC members are designed to have shear strengths much greater than their flexural strengths to ensure flexural failure according to the current codes, shear degradation of RC columns failing in flexure has not been studied widely. The aim of this study is to investigate the shear degradation of RC columns using finite element analyses (FEA). The results of FEA are compared with the results of experimental studies selected from literature, and it is observed that the lateral load-deflection curves of analysed columns are compatible with the experimental results. Twenty-six RC columns were analysed under monotonically increasing loads to determine the concrete contribution to shear strength. The results of analyses indicate that increasing the ratio of shear to flexural strength reduces the concrete contribution to shear strength of the columns.


Behrouz Behnam,
Volume 14, Issue 8 (12-2016)
Abstract

Observations and investigations have proved that using traditional fire curves such as stand-ard fire curves and natural fire curves should be limited to small/medium compartments. In addition, when using the traditional fire curves, a uniform temperature is assumed throughout the compartment. However, for large open compartments, assuming uniform temperature is not compatible with real fires. To overcome this limitation, a non-uniform fire method named as travelling fire is employed as an alternative. A study is performed here on a seismic-damaged large plan 3-story reinforced concrete structure designed to meet the life safety level of performance when exposed to a travelling fire. To draw a comparison, the structural fire analysis is also performed using the traditional methods. The results show a notable difference – while the fire resistance based on the travelling fire is around 91 minutes, it is around 140 minutes when based on a uniform temperature. This shows that the structure studied is more susceptible to failure when subjected to the non-uniform fire than the uniform fire.



Page 1 from 1     

© 2019 All Rights Reserved | International Journal of Civil Engineering

Designed & Developed by : Yektaweb