Search published articles


Showing 5 results for Particle Crushing

Saleh Zadeh H., Ghazanfari E.,
Volume 2, Issue 4 (12-2004)
Abstract

To study the behavior of carbonate sands parametrically, some monotonic triaxial testswere carried out on Kish carbonate sand. The sample was provided from Kish Island beach. Inorder to examine the effect of density and confining pressure, samples in loose and dense stateswere tested under different confining pressures. For studying the effect of drainage andconsolidation, different stress paths were followed. Also to study the effect of particle crushing indrained tests all samples were graded before and after testing. Comparison between loose anddense samples in both drained and undrained tests showed that with increasing confiningpressure, the reduction in shear resistance in loose samples is less than dense samples and theincrement rate of particle crushing in loose samples is more than dense samples. In the range oflow confining pressures both loose and dense samples showed dilation response. With increasingconfining pressure, the loose samples tended to exhibit contraction and the rate of dilation indense samples reduced. Because recovering undisturbed sample of carbonate sediments is veryhard or even impossible so the effect of soil disturbance is not studied in this research.
Saleh Zadeh H., Procter D.c., Merrifield C.m.,
Volume 3, Issue 3 (9-2005)
Abstract

The unique behaviour of carbonate materials under shear loading has stimulated in investigating of their geological and engineering properties.Carbonate soils composed of calcium or other carbonates and most abundant in tropical marine environments are of interest from geotechnical view, especially for offshore engineers engaged with Fossil-based fuel exploitation. This was initiated in the early 1960's, when the first offshore borings in the Persian Gulf identified layers of calcarenite and thick layers of sand containing visible shell fragments.For the purpose of exploiting gas and oil resources in hot and temperate climates (e.g. Persian Gulf) off-shore structures have been placed on carbonate soils. The carbonate sediments are high crushable compared with low crushable sediments such as quartzic soils.To examine the crushability of these problematic sediments a series of monotonic compression, extension and post-cyclic triaxial tests under different densities and confining pressures was carried out to study the crushing behaviour of "Rock" carbonate sand obtained from Cornwall, England.It was shown that crushing coefficient decreases with increasing in maximum principal effective stress ratio for both loose and dense states. It seems that for skeletal carbonate sand maximum and minimum dry densities will be changed during shearing loading. In other words, even though the sample has experienced an increase in density, it may also have experienced a reduction in relative density.
Mahmoud Hassanlourad, Hosein Salehzadeh, Habib Shahnazari,
Volume 6, Issue 2 (6-2008)
Abstract

In this paper shear behavior of two calcareous sands having different physical properties are

investigated using drained and undrained triaxial tests. The investigated sands are obtained from two different

zones located in Persian Gulf, Kish Island and Tonbak region. Analysis based on energy aspects show that

friction angle in these soils, having crushable particles, is formed of three components: substantial internal

friction angle, dilation and particle breakage angle. Dilation component is available in the two investigated

sand. Particle breakage component is a function of grains hardness, structure and geometry shape. Particles

breakage decreases the volume of sample during drained tests and creates positive pore water pressure during

undrained tests. Two investigated sands show different amount of dilation and particle breakage under similar

conditions. Simultaneous dilation and particles crushing and different amount of them result in different shear

behavior of the two studied sands. Energy aspects are used to determine the effect of particle crushing on the

shear strength. There is a suitable compatibility between relative breakage of grains and consumed energy

ratio for particle breakage.


A. Hamidi, M. Alizadeh, S.m. Soleimani,
Volume 7, Issue 1 (3-2009)
Abstract

There are limitations in experimental studies on sand-gravel mixtures due to the small size of testing

specimens. Due to this problem, many researchers have worked on prediction of the shear strength of mixture by testing

the sandy fraction of soil alone and developed empirical relationships. Most of the previous relationships have been

determined for low surcharge pressures in which particle breakage does not affect the shear strength parameters.

However, the particle breakage affects the relationships in higher confinements. At the present study, the results of

large scale direct shear tests on sand and sand-gravel mixtures was used to investigate the shear behavior and

dilatancy characteristics in a wider range of surcharge pressures. The gravel content, relative density, surcharge

pressure and gravel grain size were considered as variables in testing program. The relationships between shear

strength characteristics of sand and sand-gravel mixtures were determined considering dilation characteristics of the

soil. In this regard, the minimum void ratio was found as a useful indirect index that relates uniquely to the critical

state friction angle independent of soil gradation. The relations between critical state or peak friction angles of the

mixture with minimum void ratio were determined as a function of surcharge pressure. The correlations could be useful

for determination of the strength parameters of sand-gravel composites by testing sandy fraction of mixture.


Farzin Kalantary, Javad Sadoghi Yazdi, Hossein Bazazzadeh,
Volume 12, Issue 3 (7-2014)
Abstract

In comparison with other geomaterials, constitutive modeling of rockfill materials and its validation is more complicated. This is principally due to the existence of more intricate phenomena such as particle crushing, as well as laboratory test limitations. These issues have necessitated developing more complex constitutive models, with many parameters. Regardless of the type of model, the calibrations of the parameters in such models are considered as one of the most important and challenging steps in the application of the model. Therefore, the need for comprehensive and rapid methods for evaluation of optimum parameters of the models is deemed necessary. In this paper, a Neuro-Fuzzy model in conjunction with Particle Swarm Optimization (PSO) is used for calibration of the twelve parameters of Hierarchical Single Surface (HISS) constitutive model based on the Disturbed State Concept (DSC). The Neuro-fuzzy system is used to provide a high-degree nonlinear regression model between the deviatoric stress and volumetric strain versus axial strain that has been obtained from consolidated drained large scale tri-axial tests on rockfill materials. The model parameters are determined in an iterative optimized loop with PSO and ANFIS such that the equations of DSC/HISS are simultaneously satisfied. Material data used in this study are gathered from the results of large tri-axial tests for two rockfill dams in Iran. It is shown that the proposed method has higher accuracy and more importantly its robustness is exhibited through test predictions. The achieved improvement is substantiated in a comparison with the more widely used "Least-Square" method.

Page 1 from 1     

© 2019 All Rights Reserved | International Journal of Civil Engineering

Designed & Developed by : Yektaweb