Search published articles


Showing 10 results for Nonlinear Behavior

Kheyr Aldin A., Mortezaei A.r.,
Volume 2, Issue 1 (3-2004)
Abstract

Structural walls are used extensively in moderate- and high-rise buildings to resist lateral loads induced by earthquakes. The seismic performance of many buildings is, therefore, closely linked to the behavior of the reinforced concrete walls. The analytical models used in this paper are developed to study the push-over response of T-shaped reinforced concrete walls andinvestigate the influence of the flange walls on laterally loaded walls and nonlinear behavior of shear walls, namely strength, ductility and failure mechanisms. A layered nonlinear finite element method is used to study the behavior of T-shaped and rectangular (barbell) shear walls. This paper introduces a computer program to practically study three-dimensional characteristics of reinforced concrete wall response by utilizing layered modeling. The program is first verified bysimulated and reported experimental response of 3-D reinforced concrete shear walls. Subsequently, a study considering eighteen analytical test specimens of T-shaped and barbell shear walls is carried out. Finally, based on analytical results, a new equation for minimum ratio of shear wall area to floor-plan area is proposed.
Kimiaei M., Shayanfar M.a., Hesham Ei Naggar M., Agha Kouchak A.a.,
Volume 2, Issue 2 (6-2004)
Abstract

The seismic response of pile-supported offshore structures is strongly affected by the nonlinear behavior of the supporting piles. Nonlinear response of piles is the most important source of potentially nonlinear dynamic response of offshore platforms due to earthquake excitations. It is often necessary to perform dynamic analysis of offshore platforms that accountsfor soil nonlinearity, discontinuity condition at pile soil interfaces, energy dissipation through soil radiation damping and structural non linear behaviors of piles.In this paper, an attempt is made to develop an inexpensive and practical procedure compatible with readily available structural analysis software for estimating the lateral response of flexible piles embedded in layered soil deposits subjected to seismic loading. In the proposed model a BNWF (Beam on Nonlinear Winkler Foundation) approach is used consisting of simple nonlinear springs, dash pots and contact elements. Gapping and caving-in conditions at the pile-soil interfaces are also considered using special interface elements. This model was incorporated into a Finite Element program (ANSYS), which was used to compute the response of laterally excited piles. A linear approach was used for seismic free field ground motion analysis. The computed responses compared well with the Centrifuge test results.This paper deals with the effects of free field ground motion analysis on seismic non linear behavior of embedded piles. Different parts of a BNWF (Beam on Nonlinear Winkler Foundation) model, together with quantitative and qualitative findings and conclusions for dynamic nonlinear response of offshore piles, are discussed and addressed in detail. The proposed BNWF model (only using the existing features of the available general finite element software) could easily be implemented in a more comprehensive model of nonlinear seismic response analysis of pile supported offshore platforms.
R. Mahin Roosta, A. Alizadeh,
Volume 10, Issue 2 (6-2012)
Abstract

In the first impounding of rockfill dams, additional settlements occur in upstream side in saturated rockfills due to collapse
phenomenon even high rainy seasons can cause additional deformation in the dumped rockfills. Unfortunately these
displacements are not taken into account in the conventional numerical models which are currently used to predict embankment
dam behavior during impounding. In this paper to estimate these displacements, strain hardening-strain softening model in Flac
is modified based on the laboratory tests, in which same impounding process in such dams is considered. Main feature of the
model is reproduction of nonlinear behavior of rockfill material via mobilized shear strength parameters and using collapse
coefficient to display induced settlement due to inundation. This mobilization of shear strength parameters associated with some
functions for dilatancy behavior of rockfill are used in a finite difference code for both dry and wet condition of material. Collapse
coefficient is defined as a stress dependent function to show stress release in the material owing to saturation. To demonstrate
how the model works, simulation of some large scale triaxial tests of rockfill material in Gotvand embankment dam is presented
and results are compared with those from laboratory tests, which are in good agreement. The technique could be used with any
suitable constitutive law in other coarse-grained material to identify collapse settlements due to saturation


F. Khoshnoudian, O. Nozadi,
Volume 11, Issue 2 (6-2013)
Abstract

It has been pointed out the static lateral response procedure for a base-isolated structure proposed in International Building Code (IBC) somewhat overestimates the seismic story force. That is why in the current paper, vertical distribution of base shear over the height of isolated structures considering higher mode effects under near field earthquakes is investigated. Nonlinear behavior of isolation systems cause variation of frequencies transmitted to the superstructure and consequently higher modes effects should be considered. In this study base shear distribution obtained from nonlinear dynamic analysis is compared with that achieved from IBC for assessment of the international building code. This investigation has been conducted in two parts, in order to have an appropriate base shear distribution formula for isolated structures under near field earthquakes. In the first part using three first mode shapes of isolated structure and introducing coefficient corresponding to each mode, extracted from nonlinear dynamic analysis under near field earthquakes, a new formula has been derived. In the second part, the mode shape coefficients have been obtained theoretically and consequently a new base shear distribution over the height of isolated structures including the isolation system properties under near field ground motions was proposed.
R. Kamyab Moghadas, E. Salajegheh,
Volume 11, Issue 2 (6-2013)
Abstract

The present paper focuses on size optimization of scallop domes subjected to static loading. As this type of space structures includes a large number of the structural elements, optimum design of such structures results in efficient structural configurations. In this paper, an efficient optimization algorithm is proposed by hybridizing particle swarm optimization (PSO) algorithm and cellular automata (CA) computational strategy, denoted as enhanced particle swarm optimization (EPSO) algorithm. In the EPSO, the particles are distributed on a small dimensioned grid and the artificial evolution is evolved by a new velocity updating equation. In the new equation, the difference between the design variable vector of each site and an average vector of its neighboring sites is added to the basic velocity updating equation. This new term decreases the probability of premature convergence and therefore increases the chance of finding the global optimum or near global optima. The optimization task is achieved by taking into account linear and nonlinear responses of the structure. In the optimization process considering nonlinear behaviour, the geometrical and material nonlinearity effects are included. The numerical results demonstrate that the optimization process considering nonlinear behaviour results in more efficient structures compared with the optimization process considering linear behaviour. .
H. Shakib, Gh. R. Atefatdoost,
Volume 12, Issue 1 (3-2014)
Abstract

An approach was formulated for the nonlinear analysis of three-dimensional dynamic soil-structure interaction (SSI) of asymmetric buildings in time domain in order to evaluate the seismic response behavior of torsionally coupled wall-type buildings. The asymmetric building was idealized as a single-storey three-dimensional system resting on different soil conditions. The soil beneath the superstructure was modeled as nonlinear solid element. As the stiffness of the reinforced concrete flexural wall is a strength dependent parameter, a method for strength distribution among the lateral force resisting elements was considered. The response of soil-structure interaction of the system under the lateral component of El Centro 1940 earthquake record was evaluated and the effect of base flexibility on the response behavior of the system was verified. The results indicated that the base flexibility decreased the torsional response of asymmetric building so that this effect for soft soil was maximum. On the other hand, the torsional effects can be minimized by using a strength distribution, when the centre of both strength CV and rigidity CR is located on the opposite side of the centre of mass CM, and SSI has no effect on this criterion.
M. Afzalirad, M. Kamalian, M. K. Jafari, A. Sohrabi-Bidar,
Volume 12, Issue 1 (1-2014)
Abstract

In this paper, an advanced formulation of time-domain, two-dimensional Boundary Element Method (BEM) with material damping is presented. Full space two-dimensional visco-elastodynamic time-convoluted kernels are proposed in order to incorporate proportional damping. This approach is applied to carry out site response analysis of viscoelastic topographic structures subjected to SV and P incident waves. Seismic responses of horizontally layered site, semi-circular canyons, slope topography and ridge sections subjected to these incident waves are analyzed in order to demonstrate the accuracy of the kernels and the applicability of the presented viscoelastic boundary element algorithm. The results show an excellent agreement with recent published results obtained in frequency domain. Also, the effects of different material damping ratios on site response are investigated.
S. Karimiyan, A. Moghadam, A. . Husseinzadeh Kashan, M. Karimiyan,
Volume 13, Issue 1 (3-2015)
Abstract

Plan irregularity causes local damages being concentrated in the irregular buildings. Progressive collapse is also the collapse of a large portion or whole building due to the local damages in the structure. The effect of irregularity on the progressive collapse potential of the buildings is investigated in this study. This is carried out by progressive collapse evaluation of the asymmetric mid rise and tall buildings in comparison with the symmetric ones via the nonlinear time history analyses in the 6, 9 and 12 story reinforced concrete buildings. The effect of increasing the mass eccentricity levels is investigated on the progressive collapse mechanism of the buildings with respect to the story drift behavior and the number of beam and column collapsed hinges criteria. According to the results, increasing the mass eccentricity levels causes earlier instability with lower number of the collapsed hinges which is necessary to fail the asymmetric buildings and at the same time mitigates the potential of progressive collapse. Moreover, the decreasing trend of the story drifts of the flexible edges is lower than those of the stiff edges and the mass centers and the amount of decrement in the story drifts of the stiff edges is approximately similar to those of the mass centers.
Dr. Abazar Asghari, Mr. Behnam Azimi Zarnagh,
Volume 15, Issue 5 (7-2017)
Abstract

For years, coupling shear walls have been used in  the mid to high-rise buildings as a part of lateral load- resisting system mostly, because of their ability to control the displacement of structures, Recently by changing the design codes from strength based design to performance based  design, nonlinear behavior of coupled walls became important for practical engineers, so that many researchers  are looking for ways to improve and also predict the behavior of coupled walls under severe earthquakes. This paper  presents  the results of   linear,  nonlinear static ( pushover)  and  nonlinear inelastic time-history analysis  of a 10-story  two- dimensional coupling shear wall (CSW) which is perforated with 3 different patterns which are taken from considering  the S22 stress of shell elements used for modeling shear walls,  nonlinear static analysis results confirm that perforation can increase the response modification  factor of coupled walls up to 33 percent and also the results of  linear analysis and design indicate that perforation can reduce the amount of reinforcement of coupling beams and other frame's  structural components. Also results of nonlinear inelastic time history  analysis confirm that by using perforation patterns the base shear- roof displacement hysteretic response get better and the  systems with perforation patterns can absorb more energy under severe earthquakes.


Dr. Kabir Sadeghi, Dr. Fatemeh Nouban,
Volume 15, Issue 5 (7-2017)
Abstract

This paper describes both global and local versions of an energetic analytical model to quantify the damage caused to reinforced concrete (RC) structures under monotonic, cyclic or fatigue loading. The proposed model closely represents the damage to structures and yields a damage index (DI) for the RC members. The model is cumulative and is based on the energy absorbed. The energy under the monotonic envelope curve at the failure of the member is taken as a reference capacity. The data required to apply the model in any given situation or member can be obtained either by numerical simulation or from experimental tests. An analytical computer program was developed to simulate numerically the response of RC members taking into account the nonlinear behavior of the materials and structures involved. The proposed model was verified by comparison with practical tests undertaken by other researchers on over 20 RC columns. The comparison demonstrates that the model provides a realistic estimation of the damage of the RC structural members. The comparison between values of the proposed DI calculated based on experimental test data and numerical simulation results for a cyclic loading case shows that to calculate DI, it is not necessary to perform expensive experimental tests and that using a nonlinear structural analytical simulation is sufficient. The results are also compared to a damage model proposed by Meyer (1988).



Page 1 from 1     

© 2019 All Rights Reserved | International Journal of Civil Engineering

Designed & Developed by : Yektaweb