Search published articles


Showing 23 results for Highway

Mahmoud Saffarzadeh, Maghsoud Pooryari,
Volume 3, Issue 2 (6-2005)
Abstract

This paper specifies the relationship among various factors contributing to road accidents including geometrical design characteristics, environmental and traffic specifications, by multiple regression analysis. The main objective of this paper is identification of problems associated with the safety issue of road networks by application of accident prediction models. Data from previous accidents were used to develop the models. Results of this study showed that the rate of road accidents is to a large extent dependent on the rate of traffic volume. Type of road and land-use are other important factors influencing the number and intensity of accidents. The mountainous roads in this respect require special attention regarding their safety factors. The quantitative rate of road safety upgrading has also been specified by adding traffic lanes in road networks.
H. Behbahani, S.m. Elahi,
Volume 4, Issue 1 (3-2006)
Abstract

To properly plan for construction, repair, maintenance, and reconstruction of highways the minimum acceptable roadway condition is needed information. This, along with other pavement management tools, will help select the most desirable roadway alternatives. In this research the minimum acceptable conditions are developed based on an opinion survey of non-technical but high-level decision makers. Roadway roughness, expressed as international roughness index (IRI), is used as the measurement criteria. Because IRI is a widely known, acceptable, and a uniformly measurable index, it is used for the purpose of this research. The minimum IRI values developed here will help managers, planners, and engineers in prioritizing their plans and projects. Iran has a central planning system, hence having a minimum acceptable IRI will help in producing homogeneity in decision making. A questionnaire is sent to top level and influential managementlevel officials who have a decisive input in highway matters. The officials are asked to choose the minimum acceptable service level of different types of roadways and classifications. Naturally, roadways with higher levels of importance would require higher service levels. The answers to the survey questionnaires are investigated to determine a preferred minimum acceptable roadway condition. The IRI is computed using a mechanical device enabling a more uniform data collection. The IRI was first proposed by The World Bank as a standard roughness statistic. Extensive research has proven that the IRI can be related to pavement condition. The result of the opinion survey is investigated to determine the minimum levels acceptable for each category. The responses show distinct preference patterns for most of the roadway types. Survey results are investigated by plotting and analyzing them. Based on road user’s perception of roadway condition using guidelines from AASHTO, the Corp of Engineers, and related research work. The appropriate IRI limits and ranges are determined for Iran’s highways. These values are adjusted to obtain final values for Iran. The result, shown in a table, gives upper and lower IRI values accepted and recommended for Iran’s highways. The result of this research work is specifically useful in developing specifications for new pavement design, accepting new pavement from contractors, pavement management, highway planning, and in roadway life cycle cost analysis decision making. The results are subject to refinement over time.
M.h. Sebt, H. Rajaei, M.m. Pakseresht,
Volume 5, Issue 3 (9-2007)
Abstract

Project participants are becoming more aware of the high costs and risks associated with delay claims and their litigation. Among delays, weather delay has an important role in projects performed in severe environmental conditions. This research is the extension of delay analysis techniques by approving analysis of weather delays using fuzzy logic. At the presented technique, first using a fuzzy logic model calculated the delay that occurred during the activity execution after weather event then by the selected delay analysis method (Time impact analysis) and using the risk of the contractor during the contract approval together with the effect of previous delay in changing the duration of activities, analyzed weather delays in construction project. A local general contractor and governmental firms involved in a highway construction project practiced by offering their experienced and knowledge in delay analysis procedures to provide data for development and testing of the model specified for rain events. The results indicated that the presented model is in accordance with practical experiences in weather delay duration except in some circumstances that can be divided into the separated parts. It also advances the use of fuzzy logic in delay analysis procedures and becomes it more systematic special for weather delays.
M.a. Khan, A. Usmani, S.s. Shah, H. Abbas,
Volume 6, Issue 2 (6-2008)
Abstract

In the present investigation, the cyclic load deformation behaviour of soil-fly ash layered system is

studied using different intensities of failure load (I = 25%, 50% and 75%) with varying number of cycles (N =

10, 50 and 100). An attempt has been made to establish the use of fly ash as a fill material for embankments of

Highways and Railways and to examine the effect of cyclic loading on the layered samples of soil and fly ash.

The number of cycles, confining pressures and the intensity of loads at which loading unloading has been

performed were varied. The resilient modulus, permanent strain and cyclic strength factor are evaluated from

the test results and compared to show their variation with varying stress levels. The nature of stress-strain

relationship is initially linear for low stress levels and then turns non-linear for high stress levels. The test

results reveal two types of failure mechanisms that demonstrate the dependency of consolidated undrained

shear strength tests of soil-fly ash matrix on the interface characteristics of the layered soils under cyclic

loading conditions. Data trends indicate greater stability of layered samples of soil-fly ash matrix in terms of

failure load (i) at higher number of loading-unloading cycles, performed at lower intensity of deviatoric stress,

and (ii) at lower number of cycles but at higher intensity of deviatoric stress.


Shahriar Afandizadeh, Jalil Kianfar,
Volume 7, Issue 1 (3-2009)
Abstract

This paper presents a hybrid approach to developing a short-term traffic flow prediction model. In this

approach a primary model is synthesized based on Neural Networks and then the model structure is optimized through

Genetic Algorithm. The proposed approach is applied to a rural highway, Ghazvin-Rasht Road in Iran. The obtained

results are acceptable and indicate that the proposed approach can improve model accuracy while reducing model

structure complexity. Minimum achieved prediction r2 is 0.73 and number of connection links at least reduced 20%

as a result of optimization.


Malik Shoeb Ahmad, S. Salahuddin Shah,
Volume 8, Issue 4 (12-2010)
Abstract

 Roadways have a high potential for utilization of large volume of the fly ash stabilized mixes. In this study, an attempt has been made to investigate the use of Class F fly ash mixed with lime precipitated electroplating waste sludge–cement as a base material in highways. A series of tests were performed on specimens prepared with fly ash, cement and lime precipitated waste sludge. California bearing ratio (CBR) tests were conducted for 70%-55%fly ash, 8%cement, and 30%-45%waste sludge combinations. Results show that the load bearing strength of the mix is highly dependent on the waste sludge content, cement as well as curing period. The CBR value of fly ash mixed with electroplating waste sludge and cement has been increased to manifold and results the reduction in the construction cost of the pavement. The study also encourages the use of two potentially hazardous wastes for mass scale utilization without causing danger to the environment, vegetation, human and animal lives. 


F. Rezaie Moghaddam, Sh. Afandizadeh, M. Ziyadi,
Volume 9, Issue 1 (3-2011)
Abstract

In spite of significant advances in highways safety, a lot of crashes in high severities still occur in highways. Investigation of influential factors on crashes enables engineers to carry out calculations in order to reduce crash severity. Therefore, this paper deals with the models to illustrate the simultaneous influence of human factors, road, vehicle, weather conditions and traffic features including traffic volume and flow speed on the crash severity in urban highways. This study uses a series of artificial neural networks to model and estimate crash severity and to identify significant crash-related factors in urban highways. Applying artificial neural networks in engineering science has been proved in recent years. It is capable to predict and present desired results in spite of limited data sets, which is the remarkable feature of the artificial neural networks models. Obtained results illustrate that the variables such as highway width, head-on collision, type of vehicle at fault, ignoring lateral clearance, following distance, inability to control the vehicle, violating the permissible velocity and deviation to left by drivers are most significant factors that increase crash severity in urban highways.


R. A. Memon, G. B. Khaskheli, M. H. Dahani,
Volume 10, Issue 1 (3-2012)
Abstract

Present study is an extension of earlier work carried out on two-lane two way roads in the two provinces of Pakistan i.e. N-25,

N-55 and N-5 regarding the measure of operating speed and development of operating speed prediction models. Curved sections

of two-lane rural highways are the main location of run-off road accidents. In addition to that the road alignment having

combination of geometric elements may be more harmful to the drivers than the successive features with adequate separation.

This study is carried out on two-lane two- way road along N-65 (from Sibi to Quetta). Three sections are selected for study with

thirty three horizontal curves. Continuous speed profile data was recorded with the help of VBox (GPS based device) which was

attached with a vehicle to detect vehicle position through satellite signals. VBox is new equipment with modern technology in this

field and it helps in recording continuous speed profile and saving of this information on the computer as a permanent record.

Through the regression analysis, models were developed for estimation of operating speed on horizontal curves and on tangent,

and estimation of maximum speed reduction from tangent to curve. The validation of developed model shows compatibility with

the experimental data.


M. Heidarzadeh, A.a. Mirghasemi, S. M. Sadr Lahijani, F. Eslamian,
Volume 11, Issue 1 (5-2013)
Abstract

In a rare engineering experience throughout the world, we successfully stabilized relatively coarse materials of drain using

cement grouting. The grouting work was performed at the Karkheh earth dam, southwest Iran, and was part of the efforts to

extend the dam’s cut-off wall. Since the dam was completed, the execution of the new cut-off wall from the dam crest was

inevitable. Hence, one of the main difficulties associated with the development of the new cut-off wall was trenching and execution

of plastic-concrete wall through the relatively coarse materials of drain in the dam body. Due to high permeability of drain, the

work was associated with the possible risk of excessive slurry loss which could result in the collapse of the trench. In order to

achieve an appropriate grouting plan and to determine the mix ratio for the grouting material, a full-scale test platform consisting

of actual drain materials was constructed and underwent various tests. Results of the testing program revealed that a grouting

plan with at least 2 grouting rows and a Water/Cement mix ratio of 1/ (1.5-2) can successfully stabilize the drain materials. After

finalizing the technical characteristics of the grouting work, the method was applied on the drain materials of the Karkheh dam

body. The results were satisfactory and the drain materials were stabilized successfully so that the cut-off wall was executed

without any technical problem.


A. R. Rahai, S. Fallah Nafari,
Volume 11, Issue 4 (12-2013)
Abstract

The seismic behavior of frame bridges is generally evaluated using nonlinear static analysis with different plasticity models hence this paper tends to focus on the effectiveness of the two most common nonlinear modeling approaches comprising of concentrated and distributed plasticity models. A three-span prestressed concrete frame bridge in Tehran, Iran, including a pair of independent parallel bridge structures was selected as the model of the study. The parallel bridges were composed of identical decks with the total length of 215 meters supported on different regular and irregular substructures with non-prismatic piers. To calibrate the analytical modeling, a large-scale experimental and analytical seismic study on a two-span reinforced concrete bridge system carried out at the University of Nevada Reno was used. The comparison of the results shows the accuracy of analytical studies. In addition, close correlation between results obtained from two nonlinear modeling methods depicts that the lumped plasticity approach can be decisively considered as the useful tool for the nonlinear modeling of non-prismatic bridge piers with hollow sections due to its simple modeling assumption and less computational time.
H. Ghiassian, M. Jalili, I. Rahmani, Seyed M. M. Madani,
Volume 11, Issue 4 (12-2013)
Abstract

The concept of Geosynthetic Cellular Systems (GCS) has recently emerged as a new method in construction of breakwaters and coastal protective structures. The method potentially has significant advantages compared to conventional systems from the standpoint of constructability, cost effectiveness, and environmental considerations. This paper presents the results of physical model testing on the hydraulic responses of GCS structures under wave action. A series of model tests were carried out in a wave flume on GCS models with different shapes and soil types, subjected to various wave characteristics. Horizontal wave forces acting on the models were measured at different elevations. The maximum horizontal force in each test was calculated and compared with conventional formula of predicting wave pressure on breakwaters. The results show that Goda’s equation overestimates the hydrodynamic water pressure on these structures. This can be attributed to the influence of seeping water through the GCS models because of relative permeability of the GCS.
S. Soudmand, M. Ghatee, S. M. Hashemi,
Volume 11, Issue 4 (12-2013)
Abstract

This paper proposes a new hybrid method namely SA-IP including simulated annealing and interior point algorithms to find the optimal toll prices based on level of service (LOS) in order to maximize the mobility in urban network. By considering six fuzzy LOS for flows, the tolls of congested links can be derived by a bi-level fuzzy programming problem. The objective function of the upper level problem is to minimize the difference between current LOS and desired LOS of links. In this level, to find optimal toll, a simulated annealing algorithm is used. The lower level problem is a fuzzy flow estimator model with fuzzy link costs. Applying a famous defuzzification function, a real-valued multi-commodity flow problem can be obtained. Then a polynomial time interior point algorithm is proposed to find the optimal solution regarding to the estimated flows. In pricing process, by imposing cost on some links with LOS F or E, users incline to use other links with better LOS and less cost. During the iteration of SA algorithm, the LOS of a lot of links gradually closes to their desired values and so the algorithm decreases the number of links with LOS worse than desirable LOS. Sioux Falls network is considered to illustrate the performance of SA-IP method on congestion pricing based on different LOS. In this pilot, after toll pricing, the number of links with LOS D, E and F are reduced and LOS of a great number of links becomes C. Also the value of objective function improves 65.97% after toll pricing process. It is shown optimal toll for considerable network is 5 dollar and by imposing higher toll, objective function will be worse.
J. Nazari Afshar, M. Ghazavi,
Volume 12, Issue 1 (1-2014)
Abstract

The Stone-column is a useful method for increasing the bearing capacity and reducing settlement of foundation soil. The prediction of accurate ultimate bearing capacity of stone columns is very important in soil improvement techniques. Bulging failure mechanism usually controls the failure mechanism. In this paper, an imaginary retaining wall is used such that it stretches vertically from the stone column edge. A simple analytical method is introduced for estimation of the ultimate bearing capacity of the stone column using Coulomb lateral earth pressure theory. Presented method needs conventional Mohr-coloumb shear strength parameters of the stone column material and the native soil for estimation the ultimate bearing capacity of stone column. The validity of the developed method has been verified using finite element method and test data. Parametric studies have been carried out and effects of contributing parameters such as stone column diameter, column spacing, and the internal friction angle of the stone column material on the ultimate bearing capacity have been investigated.
H. Shahnazari, M. A. Shahin, M. A. Tutunchian,
Volume 12, Issue 1 (1-2014)
Abstract

Due to the heterogeneous nature of granular soils and the involvement of many effective parameters in the geotechnical behavior of soil-foundation systems, the accurate prediction of shallow foundation settlements on cohesionless soils is a complex engineering problem. In this study, three new evolutionary-based techniques, including evolutionary polynomial regression (EPR), classical genetic programming (GP), and gene expression programming (GEP), are utilized to obtain more accurate predictive settlement models. The models are developed using a large databank of standard penetration test (SPT)-based case histories. The values obtained from the new models are compared with those of the most precise models that have been previously proposed by researchers. The results show that the new EPR and GP-based models are able to predict the foundation settlement on cohesionless soils under the described conditions with R2 values higher than 87%. The artificial neural networks (ANNs) and genetic programming (GP)-based models obtained from the literature, have R2 values of about 85% and 83%, respectively which are higher than 80% for the GEP-based model. A subsequent comprehensive parametric study is further carried out to evaluate the sensitivity of the foundation settlement to the effective input parameters. The comparison results prove that the new EPR and GP-based models are the most accurate models. In this study, the feasibility of the EPR, GP and GEP approaches in finding solutions for highly nonlinear problems such as settlement of shallow foundations on granular soils is also clearly illustrated. The developed models are quite simple and straightforward and can be used reliably for routine design practice.
C. Gümüşer, A. Şenol,
Volume 12, Issue 2 (4-2014)
Abstract

The total coal and lignite consumption of the thermic power plants in Turkey is approximately 55 million tons and nearly 15 million tons of fly ash is produced. The remarkable increase in the production of fly ash and its disposal in an environmentally friendly manner is increasingly becoming a matter of global concern. Studies for the utilization of fly ash in Turkey are necessary to reduce environmental problems and avoid economical loss caused by the disposal of fly ash. Efforts are underway to improve the use of fly ash in several ways, with the geotechnical utilization also forming an important aspect of these efforts. An experimental program was undertaken to investigate the effects of Multifilament (MF19average) and Fibrillated (F19average) polypropylene fiber on the compaction and strength behavior of CH class soil with fly ash in different proportions. The soil samples were prepared at three different percentages of fiber content (i.e. 0.5%, 1% and 1.5% by weight of soil) and two different percentages of fly ash (i.e. 10% and 15% by weight of soil). A series of tests were prepared in optimum moisture content and laboratory unconfined compression strength tests, compaction tests and Atterberg limits test were carried out. The fiber inclusions increased the strength of the fly ash specimens and changed their brittle behavior into ductile behavior.
S. F. Eftekharzadeh, A. Khodabakhshi,
Volume 12, Issue 3 (9-2014)
Abstract

The previous studies show that a high percentage of traffic accidents take place in two-lane rural highways and most of which happen at horizontal curves. Meanwhile the horizontal alignment is often subject to hard topographic conditions where because of economic aspects designers are forced to design horizontal curves at grades. Vertical angle of longitudinal slope reduces the normal force of vehicle on road and friction force in tire-pavement surface will decrease. This leads to a lack of sufficient driver control over the vehicle especially if the curve with small radius is located at downgrade. In this paper, the suitability of operating speed and lateral friction coefficient as geometric design criteria for horizontal curves in downgrades are studied with regard to traffic safety and vehicle stability. The investigation of speed reduction of the vehicles running on a horizontal curve at downgrade as a response of driver behavior and the use of friction ellipse theory give the available friction coefficient. Whereas the dynamic analysis of forces applied on the vehicle in curve which is located at downgrade if combined with operating speed results in the required coefficient of lateral friction. Finally, a comparison of these two parameters based on safety evaluation criteria gives an estimation of actual safety level in designing horizontal curve at downgrades with regard to AASHTO’s data in horizontal curve design.
H. Liu, M. He, J. Guo, Zh. Hou, Y. Shi,
Volume 13, Issue 2 (6-2015)
Abstract

Self-centering pier (SCP) has been viewed as a remarkable accomplishment which is able to sustain major lateral loading with reduced structure damage in seismic engineering. Stiffness deterioration observed in experiment is vital for the seismic performance of self-centering concrete pier. In this contribution, the associated stiffness deterioration with respect to the structural damage is modeled in a modified analytical model for SCP comprehensively. In the proposed modified theoretical model, the lateral force-displacement relation associated with the stiffness reducing is analyzed. Three damage factors are introduced in the stiffness deterioration analysis to illustrate the damage evolution caused by gradually increasing lateral displacement. The proposed modified quasic-static model with damage evolution or stiffness deterioration has been validated against an experiment we conducted, where a good agreement is clearly evident. Subsequently, a parametric investigation focusing on aspect ratio, initial pre-tension, and ratio of ED (Energy Dissipator) was conducted to evaluate the hysteretic behavior of SCP under quasi-statically cyclic loading.
Z.y. Wang, Q.y. Wang,
Volume 13, Issue 4 (12-2015)
Abstract

This paper presents a finite element analysis and its related experimental test of corrugated steel web beams subjected to fatigue loading. A particular focus in this study was set on the fatigue failure arising from the web-to-flange welded joint of the corrugated steel web beam. A detailed three-dimensional finite element model which explicitly includes the geometry of the web-to-flange welds along the corrugated web was developed to simulate the test corrugated web beam. The finite element model is verified by comparing with related fatigue experimental test results. The effective notch stress approach was also applied to analyse the web-to-flange welded joint replicating the local critical region in the corrugated web beam. The fatigue strength of the web-to-flange welded joint was evaluated and compared numerically by considering the stress distribution at potential fatigue crack initiation location. The fatigue life of the corrugated web beam was assessed numerically by incorporating material S-N relation and employing fracture mechanics approach. The comparison with the fatigue test results show that it is possible to expect the fatigue crack failure arising at the weld root or weld toe corresponding to the sections with reference angle using the effective notch stress analysis. The range of these predictions was evaluated by comparing with fatigue test results with accuracy and can be considered between AASHTO fatigue categories B and B’. The parametric notch stress analysis incorporating the influences of corrugation angle was performed and demonstrates it is possible to expect the fatigue crack failure arising at the weld root or weld toe. Finally, a practical solution for possible fatigue life enhancement of such structure is proposed by decreasing the corrugation angle or smoothing the intersection geometry of the corrugated web is suggested together with a moderate increase of the flange thickness.


Alemdar Bayraktar, Ahmet Can Altunişik, Temel Türker,
Volume 14, Issue 1 (1-2016)
Abstract

This paper addresses the ambient vibration based finite element model updating of long span reinforced concrete highway bridges. The procedure includes ambient vibration tests under operational conditions, finite element modeling using special software and finite element model updating using some uncertain parameters. Birecik Highway Bridge located on the 81stkm of Şanlıurfa-Gaziantep state highway over Fırat River in Turkey is selected as a case study. Because of the fact that the bridge is the sole in this part of Fırat, it has a major logistical importance. The structural carrier system of the bridge consists of two main parts: Arch and Beam Compartments. In this part of the paper, the beam compartment is investigated. Three dimensional finite element model of the beam compartment of the bridge is constituted using SAP2000 software to determine the dynamic characteristics analytically. Operational Modal Analysis method is used to extract dynamic characteristics of the beam compartment by using Enhanced Frequency Domain Decomposition method. Analytically and experimentally identified dynamic characteristic are compared with each other and finite element model of the beam compartment of the bridge is updated by changing of some uncertain parameters such as section properties, damages, boundary conditions and material properties to reduce the differences between the results. It is demonstrated that the ambient vibration measurements are enough to identify the most significant modes of long span highway bridges. Maximum differences between the natural frequencies are reduced averagely from %46.7 to %2.39 by model updating. Also, a good harmony is found between mode shapes after finite element model updating.


Maria Castro, Rafael Luque,
Volume 14, Issue 6 (9-2016)
Abstract

The geometric design of a road based on consistency implies that this should not violate driver expectations. Although there are different methods for estimating consistency, the most used have been those based on the operating speed of vehicles. This is due to its relationship with accidents. Road alignments which cause marked differences in vehicle speeds favour a greater accident rate. In this research local approaches to evaluate the consistency of the alignments (tangents, curves) versus global approaches to evaluate an entire stretch of road have been analyzed. Different models have been used to estimate operating speed of vehicles. The study has focused from a practical point of view using two applications for the evaluation of consistency of a stretch of road. The results show the influence of the choice of the speed model in the level of consistency. In addition, practical issues about how some variables, such as desired speed, posted speed and design speed, can influence the results are presented.



Page 1 from 2    
First
Previous
1
 

© 2019 All Rights Reserved | International Journal of Civil Engineering

Designed & Developed by : Yektaweb