Search published articles


Showing 7 results for Cyclic Behavior

H. Soltani-Jigheh, A. Soroush,
Volume 4, Issue 3 (9-2006)
Abstract

This paper presents the results of a series of monotonic and post-cyclic triaxial tests carried out on a clay specimen and three types of clay-sand mixed specimens. The focus of the paper is on the post-cyclic mechanical behavior of the mixed specimens, as compared to their monotonic behavior. Analyses of the tests results show that cyclic loading degrade undrained shear strength and deformation modulus of the specimens during the post-cyclic monotonic loading. The degradation depends on the sand content, the cyclic strain level and to some degrees to the consolidation pressure.
A.r. Rahai, M.m. Alinia, S.m.f Salehi,
Volume 7, Issue 1 (3-2009)
Abstract

Concentric bracing is one of the most common lateral load resistant systems in building frames, and are

applied to many structures due to their manufacturing simplicity and economics. An important deficiency in the

bracing members is their irregular hysteretic loops under cyclic loading. In order to overcome this problem, it is

advised to restrain braces against buckling under compression, since buckling restrained frames dissipate a large

amount of energy. One method to restrain braces against buckling is to cover them with concrete. A proper covering

can prevent the core from buckling and provide similar capacities whether in tension or compression which would

produce regular hysteric curves. In this study, the behavior of buckling restrained braces (BRB) has been investigated

by considering different types of surrounding covers. The steel core is encased in concrete with different coverings. The

covering types include steel tubes, PVC pipes, and FRP rolled sheets. Experimental and numerical analyses were

implemented. According to the results, PVC pipes and FRP sheets are suitable alternatives to steel pipes. Furthermore,

the behavior of several types of steel cores was assessed since, applying steel with high ductility promotes the energy

dissipation of the brace. Finally, the effect of the separating layer between the steel core and the concrete on the

performance of bracing was evaluated.


H. Soltani-Jigheh, A. Soroush,
Volume 8, Issue 2 (6-2010)
Abstract

Mixed clayey soils occur as mixtures of sand (or gravel) and clay in widely varying proportions. Their

engineering behavior has not been comprehensively studied yet. An experimental program, comprising monotonic,

cyclic, and post-cyclic triaxial tests was undertaken on compacted clay-granular material mixtures, having different

proportions of clay and sand or gravel. This paper presents the results of cyclic triaxial tests and explains the behavior

of the mixtures based on number of loading cycles, cyclic strain amplitude, granular material content, grain size, and

effective confining pressure. The results indicate an increase in degree of degradation and cyclic loading-induced pore

water pressure as the number of loading cycles, cyclic strain and granular material content increase. Also the results

show that the grain size has no significant effect on the degree of degradation and cyclic loading-induced pore water

pressure in the specimens. The effect of granular material content on pore water pressure during cyclic loading in

equal-stress-level was also examined. The pore water pressure increases with the increase of granular material

content.


S.h.r. Kargar, H. Shahnazari, H. Salehzadeh,
Volume 12, Issue 4 (12-2014)
Abstract

In this study, a researching program is conducted by cyclic triaxial test to determine the post-cyclic behavior of Bushehr carbonate sand retrieved from the north of the Persian Gulf, under anisotropic consolidation at 200 kPa confining pressure. The article compares the post-cyclic monotonic strength and excess pore water pressures generated after the test with the pre-cyclic monotonic results. The results attest to the existence of a relationship between CSR (Cyclic Stress Ratio) and the frequency of failure cycles. The article also investigates the relationship between the amount of excess pore pressures generated during both the cyclic and post-cyclic loading, revealing an increase in the post-cyclic strength and stiffness of sand retrieved from Bushehr. Also the effect of multi stages cyclic loading, density, pore pressure and stain history in post cyclic strength and stiffness is evaluated. The increasing in post cyclic strength and stiffness depends on excess pore pressure generated during cyclic loading and stain history. This article also reveals that a distinct trend in the relation between post cyclic behavior and crushing value does not exist at lower confining pressure.


S. Karimiyan, A. Moghadam, A. . Husseinzadeh Kashan, M. Karimiyan,
Volume 13, Issue 1 (3-2015)
Abstract

Plan irregularity causes local damages being concentrated in the irregular buildings. Progressive collapse is also the collapse of a large portion or whole building due to the local damages in the structure. The effect of irregularity on the progressive collapse potential of the buildings is investigated in this study. This is carried out by progressive collapse evaluation of the asymmetric mid rise and tall buildings in comparison with the symmetric ones via the nonlinear time history analyses in the 6, 9 and 12 story reinforced concrete buildings. The effect of increasing the mass eccentricity levels is investigated on the progressive collapse mechanism of the buildings with respect to the story drift behavior and the number of beam and column collapsed hinges criteria. According to the results, increasing the mass eccentricity levels causes earlier instability with lower number of the collapsed hinges which is necessary to fail the asymmetric buildings and at the same time mitigates the potential of progressive collapse. Moreover, the decreasing trend of the story drifts of the flexible edges is lower than those of the stiff edges and the mass centers and the amount of decrement in the story drifts of the stiff edges is approximately similar to those of the mass centers.
M. Mojezi, M.k. Jafari, M. Biglari,
Volume 13, Issue 3 (12-2015)
Abstract

Experimental study of the cyclic behavior of unsaturated materials is more complex than that of the saturated materials due to the required equipment, experience and time. Furthering investigations in the field of unsaturated materials is necessary to better understand its complexity and sensitivity of unsaturated cyclic parameters to different determinants such as suction path, stress path, loading speed, deviatoric stress amplitude, physical specifications, and etc. To this end, the main focus of this study has been to analyze the effects of factors such as mean net stress and deviatoric stress levels in fast cyclic loading on the cyclic behavior of a normally consolidated unsaturated fine-grained trade soil, namely the Zenoz kaolin. Various unsaturated tests were performed in three mean net stress levels and three amplitudes of cyclic deviatoric stress levels. Results showed that increase of suction in the same strain level leads to increase in stiffness in normally consolidated samples (i.e. increase in elastic modulus and shear modulus and decrease in damping ratio). Also, in the same suction value and strain level, increase of the mean net stress during the isotropic consolidation causes to the denser normally consolidated samples and results to increase of elastic modulus and shear modulus, and decrease of damping ratio.


Chayanon Hansapinyo,
Volume 15, Issue 4 (6-2017)
Abstract

This paper presents an evaluation on lateral cyclic behaviors of precast concrete columns using a steel box connection through experimental investigation. The test consisted of one monolithic reinforced concrete column as a reference and five precast concrete columns. All specimens had identical dimensions of 0.25 x 0.25 m2 cross sectional area and 1.7 m in height with a longitudinal reinforcement ratio of 0.0152. Materials used for all specimens were also from the same batch. The study was aimed at understanding the design concept of the steel connecting box and detailing of column reinforcement for avoiding the brittle failure of precast concrete frame buildings. The experimental results show that without premature failure in welding or nut slipping, depending largely on the reinforcement details, the precast system with a steel box connection can be effectively used. Flexural failure mode with a ductile mechanism can be achieved to resemble the monolithic one. With a higher relative stiffness and capacities of the designed connecting box, the precast columns show a higher capacity as the failure section was shifted to an upper level. Hence, it can be said that the proper details of precast concrete columns contain acceptable seismic performances e.g. ultimate capacity, stiffness, energy dissipation, and capacity degradation under repeated loading.



Page 1 from 1     

© 2019 All Rights Reserved | International Journal of Civil Engineering

Designed & Developed by : Yektaweb