Search published articles

Showing 5 results for Volume Change

Shooshpasha I.,
Volume 1, Issue 2 (12-2003)

This study was designed to investigate the local volume changes induced by swelling pressure in unsaturated stand-bentonite bused buffer material. A laboratory mixture of sodium bentonite (lilt/ well graded silica stool in equal proportion by do weight was used for moisture floss experiments in both ambient and elevated temperatures. Experimental results have shown that tit high water content locations within the tested specimens, the density was reduced by .3.57% from its initial values clue to swelling. The swelling pressure was calculated by 4 different models as a function of distance. The calculated results have indicated that the density distribution within the .specimen is affected by swelling potential distribution. The calculated swelling pressure values van as u function of water content, reaching I MPa at the source of water intake, i.e., at high water content, and 2 MPa cot the heater .side, i.e., cot low water content .one.
M. S. Lee, T. S. Seo,
Volume 12, Issue 1 (3-2014)

Because thin plate reinforced concrete members such as walls and slabs are greatly influenced by the drying shrinkage, cracks can occur in these members due to the restraint of the volume change caused by drying shrinkage. Therefore, the control of cracking due to drying shrinkage is very important in building construction that the thin plate members are frequently used. However, few researches of estimating shrinkage cracking in RC walls have been executed, and the cracking control design of RC walls has been conducted based on the experience rather than the quantitative design method. In this study, the practical cracking prediction method using equivalent bond-loss length Lb was proposed for the quantitative drying shrinkage crack control of RC wall. The calculated values using proposed method were compared with the experimental results from uniaxial restrained shrinkage cracking specimens and the investigative values from the field study. In general, the results of this method were close to those of the experiment and the field study.
M. B. Esfandiari Sowmehsaraei, R. Jamshidi Chenari,
Volume 12, Issue 1 (1-2014)

Soil reinforced with fiber shows characteristics of a composite material, in which fiber inclusion has a significant effect on soil permeability. Concerning to the higher void ratio of carpet fibers, at first stages it may be expected that an increase in fiber content of the reinforced soil would result in an increase in permeability of the mixture. However, the present article demonstrates that fiber inclusion will decrease the permeability of sand-fiber composite.A series of constant head permeability tests have been carried out to show the effects and consequently, a new system of phase relationships was introduced to calculate the dry mass for the sand portion of the composite. Monte Carlo simulation technique adopted with finite element theory was employed to back calculate the hydraulic conductivity of individual porous fibers from the laboratory test results. It was observed that the permeability coefficient of the porous fibers are orders of magnitude less than the skeletal sand portion due to the fine sand particle entrapment and also the fiber volume change characteristics.
E. Lotfi, S. Delfan, A. Hamidi, H. Shahir, Gh. Fardi,
Volume 12, Issue 1 (1-2014)

In saturated soils, heating induces thermal expansion of both grains and the pore fluid. Lower thermal expansion coefficient of aggregates results in the increase of pore pressure and reduction of the effective stress besides subsequent volume changes due to the dissipation of pore pressure and heat transfer. Dissipation of thermally induced pore pressure with time is a coupled thermo-hydro-mechanical (THM) phenomenon, involving gradients of pore pressure and temperature, hydraulic and thermal flows within the mass of soil and changes in the mechanical properties with temperature. The objective of this paper is presentation of a numerical method to determine the effect of temperature on consolidation of clays. In this regard, the finite element code, PISA is used for one dimensional THM analysis of porous media. The analysis performed using both linear elastic and elastoplastic Cam clay models. Modified Cam clay model was applied in elastoplastic analysis. Variation of temperature, displacements and pore pressure determined with time and compared with numerical solutions of other researchers. Also it was indicated that implementation of coupled THM analysis yields better results for displacements compared to the hydro mechanical (HM) one. Application of elastoplastic constitutive model instead of linear elastic one indicated that preconsolidation pressure has an important effect on results of analysis.
Mr. Mehdi Goorani, Dr. Amir Hamidi,
Volume 13, Issue 2 (6-2015)

This paper presents a model for prediction of the mechanical behavior of sand-gravel mixtures using generalized plasticity and critical state concepts. Proposed model is based on the difference between critical state lines of sand and sand-gravel mixture in e-Lnp' plane. A generalized plasticity model is considered as the base model for sandy soil. Its state parameter, dilation rate and hardening function are modified to involve the effects of gravel particles on the behavior of mixture. Gravel content is considered as a physical parameter for determination of four new added parameters of the model. Verification of the proposed model performed considering four sets of experiments conducted by different researchers on poorly graded sand-gravel mixtures. According to the results, proposed model provides satisfactory qualitative and quantitative predictions of the behavior of sand-gravel mixture. Stress- strain behavior besides volumetric strains in drained condition and induced pore pressure during undrained loading are satisfactory predicted which indicates the possibility of its application in boundary value problems of geotechnical engineering.

Page 1 from 1     

© 2019 All Rights Reserved | International Journal of Civil Engineering

Designed & Developed by : Yektaweb