Search published articles


Showing 36 results for Void

Afshar A., Marino M.a., Jalali M.r.,
Volume 1, Issue 1 (9-2003)
Abstract

The reliable operation of spillways, in emergency as well as normal conditions, is one of the vital components in dam safety. Free or uncontrolled overflow spillways are the most reliable choice however. They usually impose higher construction cost and /or results in wasting a considerable amount of water or live capacity of the reservoirs. Employing fuse gates might be a way of reconciling dam safety with maximized storage capacity. The operation of the system can be controlled to within a few centimeters, and the entire installation is not lost for floods less than the maximum design flood. The installation offers more or less the same level of safety as ungated spillways, but avoids their inherent storage capacity loss. Optimum design of fuse gates in particular installation calls for a mathematical model. The model developed in this work includes structural, hydraulics and operational constraints while maximizing the expected cost over the useful life of the project. Accounting for the lost benefit (i.e., water lost as a result of gate tilting) has an influenced effect on the optimum design. To test the performance of the model, data from Zarineh Rud dam in Iran has been used and its result is compared with a direct search technique. The model is capable of helping the design engineer to select the best alternative considering different types of constraints.
Mohammad C. Pakbaz, M. Lorestani,
Volume 3, Issue 2 (6-2005)
Abstract

The main purpose of this research is evaluation of effect of chemicals on permeability of sand- bentonite mixtures. The coefficients of permeability of sand- bentonite mixtures in water, solutions of sodium and calcium chlorides, sodium hydroxide, acetic acid, methanol and carbon tetrachloride were calculated using parameters obtained in 1- D consolidation test and Terzaghi’s theory. At each void ratio permeability of samples in water is the lowest and that for carbon tetrachloride is the highest. For all fluids the permeability index Ck is decreased as the percentage of sand is increased. The largest Ck belongs to the samples tested in water and the smallest Ck belongs to the samples tested in carbon tetrachloride.
M.h. Bagheripour, S.m. Marandi,
Volume 3, Issue 2 (6-2005)
Abstract

Arational approach is introduced for numerical modeling of unbounded soil foundations based on coupled dynamic periodic infinite and conventional finite elements (IFE-FE). The model can be applied for analysis of various dynamic problems in geomechanics, especially in Soil Structure Interaction (SSI), where determination of stiffness properties and response of unbounded soil domains are of prime importance. In numerical SSI analysis, there exists important problems a) the discretization of natural soil foundation, especially defining the boundaries to prevent reflecting body waves and avoiding spurious results, b) the definition of the matrices related to the soils impedance functions which are essentially dependant on the excitation frequency, c) the evaluation of free field motion of the natural foundation, especially those of irregular geometry and material diversity. An efficient way and integrated solution to these important problems is found to be the use of periodic infinite elements. The wave equation of motion is derived numerically for discretization of the soil domain. Shape functions and mapping coordinates for dynamic periodic infinite elements are presented in this paper. The accuracy of the IFE is examined for the evaluation of free field motion of a visco-elastic soil foundation. Derivation of impedance function is shown and leads to the determination of dynamic stiffness characteristics of the unbounded soil medium including spring and dashpot coefficients. Application of the approach introduced here is shown by analysis of SSI for a semi-tall building subjected to earthquake loading. Other advantages of the approach are the substantial reduction in degrees of freedom involved in numerical SSI analysis, the computational time and costs without sacrificing the accuracy of the results.
Ali Noorzad, H.b. Poorooshasb,
Volume 3, Issue 3 (9-2005)
Abstract

The CANAsand constitutive law in conjunction with the ID technique is used to study the flow phenomenon in a cohesionless granular medium placed between two parallel, rough vertical walls. It is shown that the development of flow is influenced by the geometry of the case. However the main factor is the void ratio of the medium: i.e. arching will prevent the free flow of the material if its void is close to the compact state. The study is extended to cover the axisymmetric situation. Here the flow of bulk solids through a circular opening at the base of a cylindrical tank is examined.
Mehdi Poursha, Faramarz Khoshnoudian, Abdoreza S. Moghadam,
Volume 6, Issue 2 (6-2008)
Abstract

The nonlinear static pushover analysis technique is mostly used in the performance-based design of structures and it is favored over nonlinear response history analysis. However, the pushover analysis with FEMA load distributions losses its accuracy in estimating seismic responses of long period structures when higher mode effects are important. Some procedures have been offered to consider this effect. FEMA and Modal pushover analysis (MPA) are addressed in the current study and compared with inelastic response history analysis. These procedures are applied to medium high-rise (10 and 15 storey) and high-rise (20 and 30 storey) frames efficiency and limitations of them are elaborated. MPA procedure present significant advantage over FEMA load distributions in predicting storey drifts, but the both are thoroughly unsuccessful to predict hinge plastic rotations with acceptable accuracy. It is demonstrated that the seismic demands determined with MPA procedure will be unsatisfactory in nonlinear systems subjected to individual ground motions which inelastic SDF systems related to significant modes of the buildings respond beyond the elastic limit. Therefore, it’s inevitable to avoid evaluating seismic demands of the buildings based on individual ground motion with MPA procedure.
A. Hamidi, M. Alizadeh, S.m. Soleimani,
Volume 7, Issue 1 (3-2009)
Abstract

There are limitations in experimental studies on sand-gravel mixtures due to the small size of testing

specimens. Due to this problem, many researchers have worked on prediction of the shear strength of mixture by testing

the sandy fraction of soil alone and developed empirical relationships. Most of the previous relationships have been

determined for low surcharge pressures in which particle breakage does not affect the shear strength parameters.

However, the particle breakage affects the relationships in higher confinements. At the present study, the results of

large scale direct shear tests on sand and sand-gravel mixtures was used to investigate the shear behavior and

dilatancy characteristics in a wider range of surcharge pressures. The gravel content, relative density, surcharge

pressure and gravel grain size were considered as variables in testing program. The relationships between shear

strength characteristics of sand and sand-gravel mixtures were determined considering dilation characteristics of the

soil. In this regard, the minimum void ratio was found as a useful indirect index that relates uniquely to the critical

state friction angle independent of soil gradation. The relations between critical state or peak friction angles of the

mixture with minimum void ratio were determined as a function of surcharge pressure. The correlations could be useful

for determination of the strength parameters of sand-gravel composites by testing sandy fraction of mixture.


S.m. Moosavi, M.k. Jafari , M. Kamalian, A. Shafiee ,
Volume 8, Issue 2 (6-2010)
Abstract

Ground differential movements due to faulting have been observed to cause damage to engineered structures

and facilities. Although surface fault rupture is not a new problem, there are only a few building codes in the world

containing some type of provisions for reducing the risks. Fault setbacks or avoidance of construction in the proximity

to seismically active faults, are usually supposed as the first priority. In this paper, based on some 1-g physical

modelling tests, clear perspectives of surface fault rupture propagation and its interaction with shallow rigid

foundations are presented. It is observed that the surface fault rupture could be diverted by massive structures seated

on thick soil deposits. Where possible the fault has been deviated by the presence of the rigid foundation, which

remained undisturbed on the footwall. It is shown that the setback provision does not give generally enough assurance

that future faulting would not threaten the existing structures.


P. Ghoddousi, R. Ahmadi, Mahdi Sharifi,
Volume 8, Issue 4 (12-2010)
Abstract

 Superior performances of Self-Compacting Concrete (SCC) in fresh state to achieve a more uniform distribution encourage the addition of fibers in concrete which is a motivation for structural application of fiberreinforced concrete. Fiber addition reduces the workability of Self-Compacting Fiber Reinforced Concrete (SCFRC). To provide required workability of the SCFRC, more paste is needed in the mixture. Therefore, the coarse aggregate content shall be adjusted to maintain its workability. The purpose of this study is to drive a model for estimating the aggregate contents for SCFRC. This model is based on constant covering mortar thickness theory. In this paper, all parameters which are participated in coarse aggregate content are discussed and presented in a relation. Then another relation is developed for predicting the void volume in the fibrous concrete. These relations are combined and a mathematical relation is deduced for predicting the coarse volume content in the function of the fiber factors. Proposed model is validated by conducting a rheological test. The result shows that the proposed model is simple, applicable and can be used as starting point in practical project.      Finally in order to complete the proposed model, another relation has been derived that can show the interaction of parameters involved in SCFRC rheology behavior. 


D. P. Chen, C. X. Qian, C. L. Liu,
Volume 8, Issue 4 (12-2010)
Abstract

 Concrete deformation due to temperature and moisture condition will always develop simultaneously and interactively. The environmentally (hygral and thermally) induced stress and deformation are essential to concrete durability. To simulate the deformation of concrete caused by the coupling effect of temperature and moisture, a numerical simulation approach is proposed comprising analytical process and finite element analysis is proposed based on the mechanism of heat and moisture transfer in porous medium. In analytical method, Laplace transformation and transfer function were used to simplify and solve the coupled partial differential equations of heat and moisture transfer. The hygro-thermal deformation of concrete is numerically simulated by finite element method (FEM) based on the obtained temperature and moisture stress transformed from the solved moisture distribution. This numerical simulation approach avoids the complex eigenvalues, coupling difficulty and low accuracy in other solving method, and also effectively calculates the moisture induced shrinkage which is almost impossible using familiar FEM software. Furthermore, a software named Combined Temperature and Moisture Simulation System for concrete (CTMSoft) was represented and developed by a mix programming of Visual Basic, Matlab and ANSYS. CTMSoft provided a simple and more intuitive interface between user and computer by providing a graphical user interface (GUI). The validity of the numerical simulation approach was verified by two cases analysis.


M. Hassanlourad, H. Salehzadeh, H. Shahnazari,
Volume 9, Issue 4 (12-2011)
Abstract

The effects of cementation and the physical properties of grains on the shear behavior of grouted sands are investigated in this

paper. The consolidated-undrained triaxial shear behavior of three grouted carbonate sands with different physical properties,

including particle size distribution, particle shape and void ratio, was studied. Two sands were obtained from the north shores

of the Persian Gulf, south of Iran, called Hormoz and Kish islands sands, and one sand was obtained from the south beaches

of England and called Rock beach sand. The selected sands were grouted using a chemical grout of sodium silicate and tested

after one month of curing. Test results showed that the effect of bonding on the shear behavior and strength depends on the bond

strength and confining pressure. In addition, the shear behavior, yield strength and shear strength of grouted sands under

constant conditions, including the initial relative density, bonds strength, confining pressure and loading, were affected by the

physical properties of the sands. Furthermore, the parameters of the Mohr-Coulomb shear strength failure envelope, including

the cohesion and internal friction angle of grouted sands under constant conditions, were affected by the physical properties

and structure of the soils.


A. Hassanipour, A. Shafiee, M.k. Jafari,
Volume 9, Issue 4 (12-2011)
Abstract

Shear modulus and damping ratio are important input parameters in dynamic analysis. A series of resonant column tests was

carried out on pure clays and sand-clay mixtures prepared at different densities to investigate the effects of aggregate content,

confining stress, void ratio and clay plasticity on the maximum shear modulus and minimum damping ratio. Test results revealed

an increase in the maximum shear modulus of the mixture with the increase in sand content up to 60%, followed by a decrease

beyond this value. It was also found that the maximum shear modulus increases with confining stress, and decreases with void

ratio. In addition, minimum damping ratio increases with sand content and clay plasticity and decreases with confining stress.

Finally, on the basis of the test results, a mathematical model was developed for the maximum shear modulus.


K. Behzadian, M. Alimohammadnejad, A. Ardeshir, H. Vasheghani, F. Jalilsani,
Volume 10, Issue 1 (3-2012)
Abstract

Compared to conventional chlorination methods which apply chlorine at water treatment plant, booster chlorination has almost

solved the problems of high dosages of chlorine residuals near water sources and lack of chlorine residuals in the remote points

of a water distribution system (WDS). However, control of trihalomethane (THM) formation as a potentially carcinogenic

disinfection by-product (DBP) within a WDS has still remained as a water quality problem. This paper presents a two-phase

approach of multi-objective booster disinfection in which both chlorine residuals and THM formation are concurrently optimized

in a WDS. In the first phase, a booster disinfection system is formulated as a multi-objective optimization problem in which the

location of booster stations is determined. The objectives are defined as to maximize the volumetric discharge with appropriate

levels of disinfectant residuals throughout all demand nodes and to minimize the total mass of disinfectant applied with a specified

number of booster stations. The most frequently selected locations for installing booster disinfection stations are selected for the

second phase, in which another two-objective optimization problem is defined. The objectives in the second problem are to

minimize the volumetric discharge avoiding THM maximum levels and to maximize the volumetric discharge with standard levels

of disinfectant residuals. For each point on the resulted trade-off curve between the water quality objectives optimal scheduling of

chlorination injected at each booster station is obtained. Both optimization problems used NSGA-II algorithm as a multi-objective

genetic algorithm, coupled with EPANET as a hydraulic simulation model. The optimization problems are tested for different

numbers of booster chlorination stations in a real case WDS. As a result, this type of multi-objective optimization model can

explicitly give the decision makers the optimal location and scheduling of booster disinfection systems with respect to the tradeoff

between maximum safe drinking water with allowable chlorine residual levels and minimum adverse DBP levels.


A. Asakereh, S.n. Moghaddas Tafreshi, M. Ghazavi,
Volume 10, Issue 2 (6-2012)
Abstract

This paper describes a series of laboratory model tests on strip footings supported on unreinforced and geogrid-reinforced sand
with an inside void. The footing is subjected to a combination of static and cyclic loading. The influence of various parameters
including the embedment depth of the void, the number of reinforcement layers, and the amplitude of cyclic load were studied.
The results show that the footing settlement due to repeated loading increased when the void existed in the failure zone of the
footing and decreased with increasing the void vertical distance from the footing bottom and with increasing the reinforcement
layers beneath the footing. For a specified amplitude of repeated load, the footing settlement is comparable for reinforced sand,
thicker soil layer over the void and much improved the settlement of unreinforced sand without void. In general, the results
indicate that, the reinforced soil-footing system with sufficient geogride-reinforcement and void embedment depth behaves much
stiffer and thus carries greater loading with lower settlement compared with unreinforced soil in the absent of void and can
eliminate the adverse effect of the void on the footing behavior. The final footing settlement under repeated cyclic loading becomes
about 4 times with respect to the footing settlement under static loading at the same magnitude of load applied.


M. Fadaee, M.k. Jafari, M. Kamalian, M. Moosavi, A. Shafiee,
Volume 11, Issue 2 (11-2013)
Abstract

During past earthquakes, many instances of building damage as a result of earthquake surface fault rupture have been observed.

The results of investigating a potential mitigation scheme are presented in this paper. Such plan provides a wall in the soil with

the aim of surface displacement localization in the narrow pre-determined location. This may reduce the risk of the future rupture

downstream the wall. To evaluate the efficiency of the method, this paper (i) provides validation through successful class “A”

predictions of 1g model tests for fault deviation by weak wall and (ii) conducts sensitivity analyses on fault position, fault offset

and wall shear strength. It is shown that wall can be designed to deviate rupture path even downstream of the wall can be

protected.


M. Mohamamdi Ghazimahalleh, R. M. Ghazimahalleh,
Volume 11, Issue 3 (9-2013)
Abstract

A new type of infilled frame has been recently proposed. It has a frictional sliding fuse, horizontally installed at the mid-height of the infill. It has already shown that such infilled frames have higher ductility, strength and damping ratio as well as more enhanced hysteresis cycles, compared with regular infilled frames. This experimental paper is focused on the influence of gravitational load on the behaviour of the fused infill panel. Furthermore, a repairing method in which damaged specimens are repaired by grout plasters is also studied. The results show that the gravitational load, applied to the surrounding frame of the infill for the dead or live loads, arises the ultimate strength of the fused infill specimens. It is also shown that repairing the failed specimen by grout was so efficient that the repaired specimen had greater strength than the original one. However, top gap, between the infill and the top beam of the enclosing frame should be absolutely avoided, because it decays the ultimate strength.
M. Khorami, J. Sobhani,
Volume 11, Issue 4 (12-2013)
Abstract

Worldwide, asbestos fibers utilized in fiber cement boards, have been recognized as harmful materials regarding the public health and environmental pollutions. These concerns motivate the researchers to find the appropriate alternatives to substitute the asbestos material towards the sustainability policies. In this paper, the applicability of asbestos replacement with three types of agricultural waste fibers, including bagasse, wheat and eucalyptus fibers were experimentally investigated. To this end, the flexural behaviour and microstructure of cement composite boards made by addition of 2 % and 4 % of waste agricultural fibers in combination with and without 5 % replacement of silica fume by mass of cement were evaluated. The results of this study attested the applicability of utilized waste agricultural fibers in production of cement composite boards by improving the flexural and energy absorption characteristics, more or less, depending on the type of fibers. Moreover, it is found that application of silica fume in production of cement composite boards led to an increase in flexural strength.
H. Rahami, A. Kaveh, M. Ardalan Asl, S. R. Mirghaderi,
Volume 11, Issue 4 (12-2013)
Abstract

In the process of structural analysis we often come to structures that can be analyzed with simpler methods than the standard approaches. For these structures, known as regular structures, the matrices involved are in canonical forms and their eigen-solution can be performed in a simple manner. However, by adding or removing some elements or nodes, such methods cannot be utilized. Here, an efficient method is developed for the analysis of irregular structures in the form a regular structure with additional or missing nodes or with additional or missing supports. In this method, the saving in computational time is considerable. The power of the method becomes more apparent when the analysis should be repeated very many times as it is the case in optimal design or non-linear analysis.
M. Abbasi, A. H. Davaei Markazi,
Volume 12, Issue 1 (3-2014)
Abstract

An important factor in the design and implementation of structural control strategies is the number and placement of actuators. By employing optimally-located actuators, the effectiveness of control system increases, while with an optimal number of actuators, an acceptable level of performance can be achieved with fewer actuators. The method proposed in this paper, simultaneously determines the number and location of actuators, installed in a building, in an optimal sense. In particular, a genetic algorithm which minimizes a suitably defined structural damage index is introduced and applied to a well-known nonlinear model of a 20-story benchmark building. It is shown in the paper that an equal damage protection, compared to the work of other researchers, can be achieved with fewer numbers of optimally placed actuators. This result can be important from economic point of view. However, the attempt to minimize one performance index has negative effect on the others. To cope with this problem to some extent, the proposed genetic methodology has been modified to be applied in a multi-objective optimization problem.
A. Kaveh, A. Nasrolahi,
Volume 12, Issue 1 (3-2014)
Abstract

In this paper, a new enhanced version of the Particle Swarm Optimization (PSO) is presented. An important modification is made by adding probabilistic functions into PSO, and it is named Probabilistic Particle Swarm Optimization (PPSO). Since the variation of the velocity of particles in PSO constitutes its search engine, it should provide two phases of optimization process which are: exploration and exploitation. However, this aim is unachievable due to the lack of balanced particles’ velocity formula in the PSO. The main feature presented in the study is the introduction of a probabilistic scheme for updating the velocity of each particle. The Probabilistic Particle Swarm Optimization (PPSO) formulation thus developed allows us to find the best sequence of the exploration and exploitation phases entailed by the optimization search process. The validity of the present approach is demonstrated by solving three classical sizing optimization problems of spatial truss structures.
A. H. Eghbali, K. Fakharian,
Volume 12, Issue 1 (1-2014)
Abstract

Portland cement can be mixed with sand to improve its mechanical characteristics. Many studies are reported in literature on this topic, but the effect of principal stress rotation has not been investigated yet. Considering the inherent anisotropy of most sands, it is not clear whether the added cement shall contribute to equal increase in strength and stiffness at vertical and horizontal directions or not. Furthermore, it is not well understood how the cement as an additive in non-compacted (loose) sand compared to compacted (dense) sand without cement, contribute to improving the material behavior in undrained condition such as limiting the deformations and the liquefaction potential. In this research, undrained triaxial and simple shear tests under different stress paths are carried out on different mixtures of Portland cement (by adding 1.5, 3 and 5 percent) with clean sand to investigate the effect of principal stress rotations. The triaxial test results revealed that the cement mixture reduces the anisotropy, while it improves the mixture mechanical properties compared to compacted sand without cement. The results of the simple shear tests validated the triaxial test results and further clarified the effect of the  parameter or rotation of principal stresses on the behavior of cemented sand mixtures.

Page 1 from 2    
First
Previous
1
 

© 2019 All Rights Reserved | International Journal of Civil Engineering

Designed & Developed by : Yektaweb