Search published articles


Showing 3 results for Traffic Congestion

Sh. Afandizadeh, M. Yadak, N. Kalantar,
Volume 9, Issue 1 (3-2011)
Abstract

The congestion pricing has been discussed as a practical tool for traffic management on urban transport networks. The traffic congestion is defined as an external diseconomy on the network in transport economics. It has been proposed that the congestion pricing would be used to reduce the traffic on the network. This paper investigates the cordon-based second-best congestion-pricing problems on road networks, including optimal selection of both toll levels and toll locations. A road network is viewed as a directed graph and the cutest concept in graph theory is used to describe the mathematical properties of a toll cordon by examining the incidence matrix of the network. Maximization of social welfare is sought subject to the elastic-demand traffic equilibrium constraint. A mathematical programming model with mixed (integer and continuous) variables is formulated and solved by use of two genetic algorithms for simultaneous determination of the toll levels and cordon location on the networks. The model and algorithm are demonstrated in the road network of Mashhad CBD.
Kwang-Suek Oh, Tae-Hyung Kim,
Volume 11, Issue 2 (11-2013)
Abstract

This study was conducted to determine the effect of vibration on the curing and compressive strength of lightweight air-trapped

soil (ATS). ATS is manufactured by mixing cement with water and sand and injecting bubbles into the mixture. It is light as

compared to regular soil, can reduce the weight on the ground, and has high fluidity. If ATS is used at construction sites with

many vibration sources, such as pile driving, blasting, and construction machinery, the effect of vibration needs to be seriously

considered. If a road is expanded using ATS to reduce traffic congestion, the ATS quality may decrease because of vibration

generated by traffic moving on the road. In particular, because ATS contains many air bubbles and needs time for curing, the

effect of vibration can be greater than expected. Therefore, the effect of vibration on ATS was evaluated during the curing process

by conducting unconfined compression tests on samples prepared with different values of variables including vibration velocity,

starting vibration time, and mixing ratio. Vibration velocities of 0.25 and 0.50 cm/s did not greatly affect the strength. However,

vibration velocities of above 2.50 cm/s significantly affected the decrease in strength, and the starting vibration time also had a

clear effect on specimens cured for less than 2 hours.


H.s. Qi, Y. Y, Dian Hai Wang, Y.m. Bie,
Volume 13, Issue 4 (12-2015)
Abstract

Abstract: Gridlock is an extreme traffic state where vehicle cannot move at all. This research studies the development of gridlock by theoretical and numerical analysis. It is shown that the development of gridlock can be divided into several stages. The core of the development is the evolution of congestion loop. A congestion loop is comprised of a number of consecutively connected spillover links. The evolution of a congestion loop always tends to be stable, i.e. the state of all related links tends to be identical.. Under the stable condition, traffic states of all links are identical. A novel concept, “virtual signal” is proposed to describe the queue propagation and spillover during the stabilization. Simulation results show that congestion propagates in an accelerated way. The prevention of the first congestion loop is crucial. The achieved results have potential use for future network traffic control design and field applications



Page 1 from 1     

© 2019 All Rights Reserved | International Journal of Civil Engineering

Designed & Developed by : Yektaweb