Search published articles


Showing 76 results for Steel

Baziar M.h., Ziaie Moayed R.,
Volume 1, Issue 1 (9-2003)
Abstract

An experimental study was carried out to evaluate the influence of silt content on cone penetration measurements and its implication for soil classification. The investigation includes twenty-seven peizocone tests in saturated salty sand samples, which had been prepared in a big rigid thick walled steel cylinder-testing chamber. The samples were prepared with several different silt contents ranging from 0 to 50 percent and were consolidated at three-overburden effective stresses including 100, 200 and 300 kPa. This study showed that, the amount of silt content in sand is an important parameter affecting CPT results. As the silt content increases, the cone tip resistance decreases. The recorded excess pore water pressure during sounding was increased with increasing silt content. It is also concluded that friction ratio, in general, increases with increasing silt content. The method presented by Robertson and Wride [25] and Olsen [17] to evaluate soil classification are also verified.
A.r. Khaloo, Molaee A.,
Volume 1, Issue 2 (12-2003)
Abstract

An experimental program was carried out to investigate the behavior of steel, fiber reinforced concrete (SFRC) under abrasion and cycles of freeze and them. Compression and flexural tests were also performed in order to reach a comprehensive conclusion of the response. In total, over 200 specimens were tested The test variables included two concrete strength., (i. e., 28 MPa as Normal Strength (NSFRC) and 42 MPa as Medium Strength (MSFRC)), four volumetric percentage of fibers (i.e., 0%, 0,5%, 1.0% and 1.5%) and two fiber lengths (i.e.. 25mm and 35rnrn).Cube specimens were tested according to ASTM C6661n-ocedrrre B using 100 cycles of freeze and thaw. The Los Angeles test method for testing aggregate was used to evaluate the abrasion resistance of SFRC.Test results of1VSFRCptesertted improvements up to 39% and 32 % in cylindrical and cubic compressive strength, respectively. and 88�o in modulus of rupture, 57% in resistance against abrasion based oil weight loss and 40% against compressive strength reduction due to freeze and thaw cycles. The corresponding improvements for MSFRC were 18%, 16%, 48%, 53% and 46% respectively.Increase in cocncrete strength from 28 Ala to 42 MPa provided higher freeze and thaw and abrasion resistance than addition of 1.5% of steel fibers to the normal strength concrete matrix.
Mazloom M., Ramezanian Pour A.a.,
Volume 2, Issue 1 (3-2004)
Abstract

This paper presents the long-term deformations of reinforced high-strength concrete columns subjected to constant sustained axial forces. The objective of the study was to investigate the effects of binder systems containing different levels of silica fume on time-dependent behaviour of high-strength concrete columns. The experimental part of the work focused on concrete mixes having a fixed water/binder ratio of 0.35 and a constant total binder content of 500 kg/m3. The percentages of silica fume that replaced cement in this research were: 0%, 6%, 8%, 10% and 15%. The mechanical properties evaluated in the laboratory were: compressive strength secant modulus of elasticity strain due to creep and shrinkage. The theoretical part of the work is about stress redistribution between concrete and steel reinforcement as a result of time-dependent behaviour of concrete. The technique used for including creep in the analysis of reinforced concrete columns was age-adjusted effective modulus method. The results of this research indicate that as the proportion of silica fume increased, the short-term mechanical properties of concrete such as 28-day compressive strength and secant modulus improved. Also the percentages of silica fume replacement did not have a significant influence on total shrinkage however, the autogenous shrinkage of concrete increased as the amount of silica fume increased. Moreover, the basic creep of concrete decreased at higher silica fume replacement levels. Drying creep (total creep - basic creep) was negligible in this investigation. The results of the theoretical part of this researchindicate that as the proportion of silica fume increased, the gradual transfer of load from the concrete to the reinforcement decreased and also the effect of steel bars in lowering the concrete deformation reduced. Moreover, the total strain of concrete columns decreased at higher silicafume replacement levels.
M.r Esfahani , M.r Kianoush, M. Lachemi ,
Volume 2, Issue 3 (9-2004)
Abstract

This paper compares the results of two experimental studies on bond strength of steel and GFRP bars in the case of self-consolidating concrete (SCC). Each study included pull-out tests of thirty six reinforcing bars embedded in concrete specimens. Two types of concretes, normal concrete and self-consolidating concrete were used in different studies. Different parameters such as bar location and cover thickness were considered as variables in different specimens. The comparison between the results of GFRP reinforcing bars with those of steel deformed bars showed that the splitting bond strength of GFRP reinforcing bars was comparable to that of steel bars in both normal strength and self-consolidating concrete (SCC). The bond strength of bottom reinforcing bars was almost the same for both normal concrete and self-consolidating concrete. However, for the top bars, the bond strength of self-consolidating concrete was less than that of normal concrete.
Khalou A.r., Ghara Chour Lou A.,
Volume 3, Issue 1 (3-2005)
Abstract

This paper presents the results of analytical studies concerning the flexuralstrengthening of reinforced concrete beams by external bonding of high-strength lightweightcarbon fiber reinforced plastic (CFRP) plates to tension face of the beam. Three groups of beamswere tested analytically and compared with existing experimental results. Results of the numericalanalyses showed that, although addition of CFRP plates to the tension face of the beam increasesthe strength, it decreases the beam ductility. Finite element modeling of fifteen different beams in aparametric study indicates that steel area ratio, CFRP thickness, CFRP ultimate strength andelastic modulus considerably influence the level of strengthening and ductility.
H. Oucief, M.f. Habita, B. Redjel,
Volume 4, Issue 2 (6-2006)
Abstract

In most cases, fiber reinforced self-compacting concrete (FRSCC) contains only one type of fiber. The use of two or more types of fibers in a suitable combination may potentially not only improve the overal properties of self-compacting concrete, but may also result in performance synergie. The combining of fibers, often called hybridization, is investigated in this paper for a cimentetious matrix. Control, single, two fibers hybrid composites were cast using different fiber type steel and polypropylene with different sizes. Flexural toughness tests were performed and results were extensively analysed to identify synergy, if any, associated with various fiber combinations. Based on various analysis schemes, the paper identifies fiber combinations that demonstrate maximum synergy in terms of flexural toughness.
H. Moharrami, S.a. Alavinasab,
Volume 4, Issue 2 (6-2006)
Abstract

In this paper a general procedure for automated minimum weight design of twodimensional steel frames under seismic loading is proposed. The proposal comprises two parts: a) Formulation of automated design of frames under seismic loading and b) introduction of an optimization engine and the improvement made on it for the solution of optimal design. Seismic loading, that depends on dynamic characteristics of structure, is determined using "Equivalent static loading" scheme. The design automation is sought via formulation of the design problem in the form of a standard optimization problem in which the design requirements is treated as optimization constraints. The Optimality Criteria (OC) method has been modified/improved and used for solution of the optimization problem. The improvement in (OC) algorithm relates to simultaneous identification of active set of constraints and calculation of corresponding Lagrange multipliers. The modification has resulted in rapid convergence of the algorithm, which is promising for highly nonlinear optimal design problems. Two examples have been provided to show the procedure of automated design and optimization of seismic-resistant frames and the performance and capability of the proposed algorithm.
F. R. Rofooei, N. K. Attari, A. Rasekh, A.h. Shodja,
Volume 4, Issue 3 (9-2006)
Abstract

Pushover analysis is a simplified nonlinear analysis technique that can be used to estimate the dynamic demands imposed on a structure under earthquake excitations. One of the first steps taken in this approximate solution is to assess the maximum roof displacement, known as target displacement, using the base shear versus roof displacement diagram. That could be done by the so-called dynamic pushover analysis, i.e. a dynamic time history analysis of an equivalent single degree of freedom model of the original system, as well as other available approximate static methods. In this paper, a number of load patterns, including a new approach, are considered to construct the related pushover curves. In a so-called dynamic pushover analysis, the bi-linear and tri-linear approximations of these pushover curves were used to assess the target displacements by performing dynamic nonlinear time history analyses. The results obtained for five different special moment resisting steel frames, using five earthquake records were compared with those resulted from the time history analysis of the original system. It is shown that the dynamic pushover analysis approach, specially, with the tri-linear approximation of the pushover curves, proves to have a better accuracy in assessing the target displacements. On the other hand, when nonlinear static procedure seems adequate, no specific preference is observed in using more complicated static procedures (proposed by codes) compared to the simple first mode target displacement assessment.
F.m. Wegian, M.t. Alkhamis, S.r. Sabbagh Yazdi,
Volume 4, Issue 4 (12-2006)
Abstract

This study evaluates two different types of techniques for concrete hollow-block sections reinforced with traditional steel rebars and wire meshes, and compares their structural behaviour to that of an ordinary reinforced concrete beam section. The comparisons are based on the responses both before and after they were repaired with glass fibre reinforced polymers (GFRP). The specimens were subjected to concentrated loading up to initial failure. After failure, the specimens were repaired and loaded once again until ultimate failure. It was shown that the success of the repair by GFRP depended on the mode of failure of the hollow-block concrete beams.
M. Mazloom, A.a. Mehrabian,
Volume 4, Issue 4 (12-2006)
Abstract

The objective of this paper is to present a new method for protecting the lives of residents in catastrophic earthquake failures of unreinforced masonry buildings by introducing some safe rooms within the buildings. The main idea is that occupants can seek refuge within the safe rooms as soon as the earthquake ground motions are felt. The information obtained from the historical ground motions happened in seismic zones around the globe expresses the lack of enough safety of masonry buildings against earthquake. For this potentially important reason, an attempt has been made to create some cost-effective seismic-resistant areas in some parts of the existing masonry buildings, which are called safe rooms. The practical method for creating these areas and increasing the occupant safety of the buildings is to install some prefabricated steel frames in some of their rooms or in their halls. These frames do not carry any service loads before earthquake. However, if a near field seismic event happens and the load bearing walls of the building destroy, some parts of its floors, which are in the safe areas, will fall on the roof of the installed frames consequently, the occupants who have sheltered in the safe rooms will survive. This paper expresses the experimental and theoretical work executed on the steel structures of the safe rooms for bearing the shock and impact loads. Finally, it was concluded that both the strength and displacement capacity of the steel frames were adequate to accommodate the distortions generated by seismic loads and aftershocks properly.
A.a. Maghsoudi, H. Akbarzadeh Bengar,
Volume 5, Issue 2 (6-2007)
Abstract

Limit to the tension reinforcement ratio ( ρ) in flexural high strength reinforced concrete (HSRC) members is based on the requirement that tension failure as sufficient rotation capacity are ensured at ultimate limit state. However, the provisions for the total amount of longitudinal reinforcement ratio ( ρ and ρ’) are not associated with any rational derivation. In this paper, a quantitative measure to evaluate an upper limit to the compression reinforcement ratio ρBmax of flexural HSRC members is proposed. The quantitative criterion to ρBmax can be derived from i) steel congestion and ii) considerations that are related to the diagonal compression bearing capacity of the members. In this paper it is shown that, when shear loading is dominant, the limit to is set by the diagonal compression criterion. Parameters that affect this limit are deeply investigated and the expressions were derived for different end conditions, to provide an additional tool for a better design and assessment of the flexural capacity of HSRC members.
M.kazem Sharbatdar,
Volume 6, Issue 1 (3-2008)
Abstract

FRPs (fiber reinforced polymer) possess many favorable characteristics suitable and applicable for construction industry when compared with steel reinforcement. There are new ideas to use FRPs as longitudinal or transverse reinforcement for new concrete elements particularly for bridge decks or beams. Although high tensile strength of FRP is main characteristic for applications at both areas, its weakness to bending and linear stress-strain behavior with virtually no ductility, makes it vulnerable to probably premature failures under reversal tension-compression loading during earthquake. A pilot research project has been conducted to explore the characteristics of large-scale cantilever concrete beams reinforced with FRP re-bars and grids and were tested under either simulated cyclic loading or monotonically increasing lateral loading. This paper presents the test parameters and results obtained during research. The analytical relationships are compared with those recorded experimentally, and test results showed the diagonal cracks and either rupturing of FRP bars in tension or stability failure in compression bars at long or short shear span beams. The comparison of nominal moment capacities between analytical and experimental values confirms that plane section analysis is applicable to FRP reinforced concrete members.
A. Foroughi-Asl, S. Dilmaghani, H. Famili,
Volume 6, Issue 1 (3-2008)
Abstract

Self-Compacting Concrete (SCC) is a highly fluid yet stable concrete that can flow consistently under its own weight, pass between bars, and fill in formwork without the need of compaction. The application of SCC effectively resolves the difficulties of concreting in situations with complicated formwork and congested reinforcements. In this paper, the bond between SCC and steel reinforcement was investigated. The bonding strengths of reinforcing bars were measured using cubic specimens of SCC and of normal concrete. The SCC specimens were cast without applying compaction, whereas the specimens of normal concrete were cast by conventional practice with substantial compaction and vibration. The results showed that SCC specimens generated higher bond to reinforcing bars than normal concrete specimens and the correlation between bond strength and compressive strength of NC is more consistent.
M. Reza Esfahani,
Volume 6, Issue 3 (9-2008)
Abstract

In this paper, the effect of cyclic loading on punching strength of flat slabs strengthened with Carbon Fiber Reinforced Polymer (CFRP) sheets is studied. Experimental results of ten slab specimens under monotonic and cyclic loading are analyzed. Eight specimens were strengthened with CFRP sheets on the tensile face of the slabs and the two other specimens were kept un-strengthened as control specimens. The width of CFRP sheets varied in different specimens. After the tests, the punching shear strength of specimens under cyclic loading was compared with those with monotonic loading. The comparison of results shows that cyclic loading decreases the effect of CFRP sheets on punching shear strengthening. This decrease was more for the specimens with a larger value of reinforcing steel ratio. Therefore, it can be concluded that for specimens with large reinforcing steel ratios, cyclic loading may completely eliminate the effect of CFRP sheets on shear strengthening of slabs.
A.a. Maghsoudi, H. Akbarzadeh Bengar,
Volume 7, Issue 1 (3-2009)
Abstract

Limit to the tension reinforcement ratio in flexural high strength reinforced concrete (HSRC) members is

based on the requirement that tension failure as sufficient rotation capacity are ensured at ultimate limit state.

However, the provisions for the total amount of longitudinal reinforcement ratio ( and ) are not associated with

any rational derivation. In this paper, a quantitative measure to evaluate an upper limit to the compression

reinforcement ratio of flexural HSRC members is proposed. The quantitative criterion to can be derived

from i) steel congestion and ii) considerations that are related to the diagonal compression bearing capacity of the

members. In this paper it is shown that, when shear loading is dominant, the limit to is set by the diagonal

compression criterion. Parameters that affect this limit are deeply investigated and the expressions were derived for

different end conditions, to provide an additional tool for a better design and assessment of the flexural capacity of

HSRC members.


A.r. Rahai, M.m. Alinia, S.m.f Salehi,
Volume 7, Issue 1 (3-2009)
Abstract

Concentric bracing is one of the most common lateral load resistant systems in building frames, and are

applied to many structures due to their manufacturing simplicity and economics. An important deficiency in the

bracing members is their irregular hysteretic loops under cyclic loading. In order to overcome this problem, it is

advised to restrain braces against buckling under compression, since buckling restrained frames dissipate a large

amount of energy. One method to restrain braces against buckling is to cover them with concrete. A proper covering

can prevent the core from buckling and provide similar capacities whether in tension or compression which would

produce regular hysteric curves. In this study, the behavior of buckling restrained braces (BRB) has been investigated

by considering different types of surrounding covers. The steel core is encased in concrete with different coverings. The

covering types include steel tubes, PVC pipes, and FRP rolled sheets. Experimental and numerical analyses were

implemented. According to the results, PVC pipes and FRP sheets are suitable alternatives to steel pipes. Furthermore,

the behavior of several types of steel cores was assessed since, applying steel with high ductility promotes the energy

dissipation of the brace. Finally, the effect of the separating layer between the steel core and the concrete on the

performance of bracing was evaluated.


M. Mazloom, A.a. Mehrabian,
Volume 7, Issue 4 (12-2009)
Abstract

Pullback test has no scrupulous theoretical establishment. It is based on the hypothesis that the response of

the structure can be related to the response of an equivalent single degree-of-freedom (SDOF) system. This implies that

the response is controlled by a single mode. In fact, the steel frame of each safe room, which is introduced within the

unreinforced masonry buildings for protecting the lives of residents in catastrophic earthquake failures, contains a

SDOF structural system. In pullback test, the steel frame carries its gravity load first, and then it will be pushed under

an incremental lateral roof displacement pattern, which is imposed to its center of mass. This paper expresses the

results of 13 pullback tests executed by the authors on the steel frames of safe rooms. The results show that pullback

test is a practical method for seismic performance evaluation of safe rooms. Also the performance of these frames

located in a collapsing three storey masonry building is presented with favorable conclusions. In fact, the results of

pullback test of the safe room located at the ground-floor level were compared with the requirements of Iranian code

for seismic resistant design and it was concluded that the steel frame had an acceptable performance against seismic

effects.


A.r. Khaloo, I. Eshghi, P. Piran Aghl,
Volume 8, Issue 3 (9-2010)
Abstract

In this paper the response of cantilevered reinforced concrete (RC) beams with smart rebars under static lateral loading has been numerically studied, using Finite Element Method. The material used in this study is SuperelasticShape Memory Alloys (SE SMAs) which contains nickel and titanium elements. The SE SMA is a unique alloy that has the ability to undergo large deformations and return to their undeformed shape by removal of stresses. In this study, different quantities of steel and smart rebars have been used for reinforcement andthe behavior of these models under lateral loading, including their load-displacement curves, residual displacements, and stiffness, were discussed. During lateral loading, rebars yield or concrete crushes in compression zone in some parts of the beams and also residual deflections are created in the structure. It is found that by using SMA rebars in RC beams, these materials tend to return to the previous state (zero strain), so they reduce the permanent deformations and also in turn create forces known as recovery forces in the structure which lead into closing of concrete cracks in tensile zone. This ability makes special structures to maintain their serviceability even after a strong earthquake


A. Kaveh, N. Farhoodi,
Volume 8, Issue 3 (9-2010)
Abstract

In this paper, the problem of layout optimization for X-bracing of steel frames is studied using the ant system (AS). A new design method is employed to share the gravity and the lateral loads between the main frame and the bracings according to the requirements of the IBC2006 code. An algorithm is developed which is called optimum steel designer (OSD). An optimization method based on an approximate analysis is also developed for layout optimization of braced frames. This method is called the approximate optimum steel designer (AOSD) and uses a simple deterministic optimization algorithm leading to the optimum patterns and it is much faster than the OSD. Several numerical examples are treated by the proposed methods. Efficiency and accuracy of the methods are then discussed. A comparison is also made with Genetic algorithm for one of the frames.


H. Bahrampoor, S. Sabouri-Ghomi,
Volume 8, Issue 3 (9-2010)
Abstract

 From the time that civil engineers have used steel in building structures, they tried to increase its strength so as to produce more economic and lighter structures by using more elegant sections. Increase of steel strength is not always useful for all members of a steel structure. In some members under certain conditions, it is needed to reduce the strength as much as possible to improve the behavior of structure. By using very low strength steel according to the Easy-Going Steel (EGS) concept in this research, it is shown that the performance of diagonal Eccentrically Braced Frames (EBFs) improves substantially. For this purpose, a finite element analysis was used to simulate diagonal eccentrically braced frames. Fifteen diagonal eccentrically braced frames were designed through AISC2005. By substitutingvery low strength steelinstead of carbon steel with equal strength in the links, their performance improve fundamentally without any global or local instability in their links.



Page 1 from 4    
First
Previous
1
 

© 2019 All Rights Reserved | International Journal of Civil Engineering

Designed & Developed by : Yektaweb