Search published articles


Showing 7 results for Scattering

H. Shakib, F. Omidinasab, M.t. Ahmadi,
Volume 8, Issue 3 (9-2010)
Abstract

Elevated water tanks as one of the main lifeline elements are the structures of high importance. Since they are extremely vulnerable under lateral forces, their serviceability performance during and after strong earthquakes is a matter of concern. As such, in recent years, the seismic behavior of water tanks has been the focus of a significant amount of studies. In the present work, three reinforced concrete elevated water tanks, with a capacity of 900 cubic meters and height of 25, 32 and 39 m were subjected to an ensemble of earthquake records. The behavior of concrete material was assumed to be nonlinear. Seismic demand of the elevated water tanks for a wide range of structural characteristics was assessed. The obtained results revealed that scattering of responses in the mean minus standard deviation and mean plus standard deviation are approximately 60% to 70 %. Moreover, simultaneous effects of mass increase and stiffness decrease of tank staging led to increase in the base shear, overturning moment, displacement and hydrodynamic pressure equal to 10 - 20 %, 13 - 32 %, 10 - 15 % and 8 - 9 %, respectively.


H. Tavazo, H. E. Estekanchi, P. Kaldi,
Volume 10, Issue 3 (9-2012)
Abstract

Endurance Time (ET) method is a response history based analysis procedure that can be used for estimating the seismic response

of structures at different excitation levels in each response history. This seismic analysis method utilizes specific intensifying

acceleration functions to analyze seismic behaviors. One of the potential applications of the ET method is in the seismic

assessment of shell structures. In this study, a procedure for linear seismic analysis of shell structures is proposed and

applications of this method is investigated for several cases of shell structures. These structures are analyzed under three ET

acceleration functions in one direction and the results are compared to time history analysis considering seven actual earthquake

records. Moreover, the results of the ET method are compared to response spectrum analysis method. The outcomes of the study

reveal that the ET method predicts the linear seismic performance of shell structures with acceptable precision and significant

reduction in analysis time. Furthermore, it is conluded that scattering of results of three ET analysis is very low and one analysis

can be used instead of three. Finally, the comparison between THA and RSM results verify that response spectuarm method is a

conservative method which occasionally encounters problems to evaluate bending stresses of shell structures


H. Alielahi, M. Kamalian, J. Asgari Marnani, M. K. Jafari, M. Panji,
Volume 11, Issue 1 (5-2013)
Abstract

In this paper, an advanced formulation of a time-domain two-dimensional boundary element method (BEM) is presented and

applied to calculate the response of a buried, unlined, and infinitely long cylindrical cavity with a circular cross-section subjected

to SV and P waves. The applicability and efficiency of the algorithm are verified with frequency-domain BEM examples of the

effect of cylindrical cavities on the site response analysis. The analysis results show that acceptable agreements exist between

results of this research and presented examples. For a shallow cavity, the numerical results demonstrate that vertically incident

SV wave reduces the horizontal components of the motion on the ground surface above the cavity, while it significantly increases

the vertical component for a dimensionless frequency (&eta) of 0.5 and h/a=1.5. The maximum values of normalized displacements

in vertical component of P waves are larger than horizontal component of SV waves for &eta=1.0. For a deeply embedded cavity,

the effect of the cavity on the surface ground motion is negligible for incident SV wave, but it increases the vertical component of

the displacement for incident P wave. Additionally, far and near distances from the center of the cavity show different amplitude

patterns of response due to the cavity effect. Increasing the distance from the center of the cavity, the amplitude of displacement

and the effect of the cavity attenuates significantly.


H. Shakib, Gh. R. Atefatdoost,
Volume 12, Issue 1 (3-2014)
Abstract

An approach was formulated for the nonlinear analysis of three-dimensional dynamic soil-structure interaction (SSI) of asymmetric buildings in time domain in order to evaluate the seismic response behavior of torsionally coupled wall-type buildings. The asymmetric building was idealized as a single-storey three-dimensional system resting on different soil conditions. The soil beneath the superstructure was modeled as nonlinear solid element. As the stiffness of the reinforced concrete flexural wall is a strength dependent parameter, a method for strength distribution among the lateral force resisting elements was considered. The response of soil-structure interaction of the system under the lateral component of El Centro 1940 earthquake record was evaluated and the effect of base flexibility on the response behavior of the system was verified. The results indicated that the base flexibility decreased the torsional response of asymmetric building so that this effect for soft soil was maximum. On the other hand, the torsional effects can be minimized by using a strength distribution, when the centre of both strength CV and rigidity CR is located on the opposite side of the centre of mass CM, and SSI has no effect on this criterion.
M. Afzalirad, M. Kamalian, M. K. Jafari, A. Sohrabi-Bidar,
Volume 12, Issue 1 (1-2014)
Abstract

In this paper, an advanced formulation of time-domain, two-dimensional Boundary Element Method (BEM) with material damping is presented. Full space two-dimensional visco-elastodynamic time-convoluted kernels are proposed in order to incorporate proportional damping. This approach is applied to carry out site response analysis of viscoelastic topographic structures subjected to SV and P incident waves. Seismic responses of horizontally layered site, semi-circular canyons, slope topography and ridge sections subjected to these incident waves are analyzed in order to demonstrate the accuracy of the kernels and the applicability of the presented viscoelastic boundary element algorithm. The results show an excellent agreement with recent published results obtained in frequency domain. Also, the effects of different material damping ratios on site response are investigated.
Jafar Najafizadeh, Mohsen Kamalian, Mohammad Kazem Jafari, Naser Khaji,
Volume 12, Issue 3 (7-2014)
Abstract

In this paper, an advanced formulation of the spectral finite element method (SFEM) is presented and applied in order to carry out site response analysis of 2D topographic structures subjected to vertically propagating incident in-plane waves in time-domain. The accuracy, efficiency and applicability of the formulation are demonstrated by solving some wave scattering examples. A numerical parametric study has been carried out to study the seismic response of rectangular alluvial valleys subjected to vertically propagating incident SV waves. It is shown that the amplification pattern of the valley and its frequency characteristics depend strongly on its shape ratio. The natural frequency of the rectangular alluvial valley decreases as the shape ratio of the valley decreases. The maximum amplification ratio along the ground surface occurs at the center of the valley. A simple formula has been proposed for making initial estimation of the natural period of the valley in site effect microzonation studies.
Parviz Ghoddousi, Amir Masoud Salehi,
Volume 15, Issue 8 (12-2017)
Abstract

The fresh properties of Self Compacting Concrete (SCC) might be more susceptible to quality and quantity changes of ingredients than conventional concrete because of a combination of detailed requirements, more complex mix design, and inherent low yield stress and viscosity. In spit of the low robustness of SCC, there are a few methods available to assess the SCC robustness that the accuracy of these methods has not been fully agreed. The current study provides an index for SCC robustness based on the rheology parameters. Thus, an experimental program was undertaken to evaluate the robustness of eight selected SCCs. For doing this, water content of each SCC was changed slightly and their fresh and hardened properties were measured. The results indicated that the length of rheology parameters curve due to variation of mixing water is able to assess the SCC robustness that is comparable with combined performance based on the workability tests changes. According to this index, the robustness of SCC increases about 10% by using air-entraining admixture (AEA) and decreases considerably by reduction the paste volume (up to about 5 times). Also, the most appropriate single workability test to assess the robustness is sieve segregation test. Moreover, the scattering of compressive strength results show that there is a level of robustness in fresh state that after that the scattering of results in hardened state can be affected.

Page 1 from 1     

© 2019 All Rights Reserved | International Journal of Civil Engineering

Designed & Developed by : Yektaweb