Search published articles

Showing 2 results for Rut Resistance

H. Ziari, H. Divandari,
Volume 11, Issue 2 (6-2013)

Pavement permanent deformations due to lack of shear strength in mixture are a major reason of rutting. Any simple test to determine mixtures resistance to permanent deformation isn’t distinguished in the 1st level of SUPERPAVE mix design method and prevalent methods for evaluating mixture rut resistance are expensive and time-consuming. Two aggregate types, gradations, asphalt cements and filler types were used in this research to present a prediction model for rutting based on flow number. A mathematical model to estimate flow number of dynamic creep test was developed using model parameters and gyratory compaction slope. The model is validated using Neural Network and Genetic Algorithm and makes it possible to evaluate mixtures shear strength while optimum asphalt content is being determined in laboratory. So not only there is no need to expensive test instruments of rutting or dynamic creep but a remarkable time saving in mix design procedure is achievable.
A. Qadir, A. Qadir,
Volume 12, Issue 3 (9-2014)

Rutting in asphalt concrete is a very common form of distress in asphalt concrete pavement which unfortunately has been incurable to date. One of the prime reasons of rutting is attributed to the behaviour of asphalt binder at elevated temperature. This study has investigated the performance of polypropylene fibres modified asphalt concrete mix against rutting. Two types of asphalt concrete samples were prepared namely control samples (those without polypropylene addition) and modified samples (with polypropylene modification). Marshall Mix Design was used for determining the Optimum Asphalt Content for both sample types. Slab asphalt concrete specimens of dimensions 300 mm length and breadth and 50 mm thickness were prepared for both control and modified samples. These samples were then tested in the Wheel Tracking Device for rutting susceptibility test. The samples were tested at four temperatures i.e. 40°C, 50°C, 55°C and 60°C and under the application of 10 000 load passes of 700N of axle load.. The polypropylene fibres were found to increase the Marshall Stability by almost 25%. The fibres were also determined to be effective against rutting at elevated temperatures while the modification was found to increase the Indirect Tensile strength by stiffening the mix at high temperature however at low temperature, the modification failed to perform effectively.

Page 1 from 1     

© 2019 All Rights Reserved | International Journal of Civil Engineering

Designed & Developed by : Yektaweb