Search published articles

Showing 4 results for Plasticity Index

S.a. Naeini, R. Ziaie_moayed,
Volume 7, Issue 2 (6-2009)

In recent years, soil reinforcement is considered of great importance in many different civil projects. One of the most significant applications of soil reinforcement is in road construction. Sub grade soil and its properties are very important in the design of road pavement structure. Its main function is to give adequate support to the pavement from beneath. Therefore, it should have a sufficient load carrying capacity. The use of geosynthetics in road and airfield construction has shown the potential to increase the soil bearing capacity. One category of geosynthetics to particular, geogrid, has gained increasing acceptance in road construction. A geogrid is a geosynthetic material consisting of connected parallel sets of tensile ribs with apertures of sufficient size to allow strike-through of surrounding soil, stone, or other geotechnical material. Geogrid reinforcement of sub grade soil is achieved through the increase of frictional interaction between the soil and the reinforcement. Geogrid have been successfully used to provide a construction platform over subgrades. In this application, the geogrid improves the ability to obtain compaction in overlying aggregates, while reducing the amount of material required be removing and replacing. Relative agreement exists that substantial benefits can be achieved from the inclusion of geogrids within the pavement systems however, the quantity of the improvement is in relative disagreement. This paper presents the effects of plasticity index and also reinforcing of soft clay on CBR values. Three samples of clay with different plasticity index (PI) values are selected and tested without reinforcement. Then by placing one and two layer of geogrid at certain depth within sample height, the effects of reinforcement and PI on CBR values are investigated in both soaked and unsoaked conditions. The results shows that as the PI increase the CBR value decreases and reinforcing clay with geogrid will increase the CBR value.
J. Nazari Afshar, M. Ghazavi,
Volume 12, Issue 1 (1-2014)

The Stone-column is a useful method for increasing the bearing capacity and reducing settlement of foundation soil. The prediction of accurate ultimate bearing capacity of stone columns is very important in soil improvement techniques. Bulging failure mechanism usually controls the failure mechanism. In this paper, an imaginary retaining wall is used such that it stretches vertically from the stone column edge. A simple analytical method is introduced for estimation of the ultimate bearing capacity of the stone column using Coulomb lateral earth pressure theory. Presented method needs conventional Mohr-coloumb shear strength parameters of the stone column material and the native soil for estimation the ultimate bearing capacity of stone column. The validity of the developed method has been verified using finite element method and test data. Parametric studies have been carried out and effects of contributing parameters such as stone column diameter, column spacing, and the internal friction angle of the stone column material on the ultimate bearing capacity have been investigated.
G. P. Ganapathy, R. Gobinath, I. I. Akinwumi, S. Kovendiran, M. Thangaraj, N. Lokesh, S. Muhamed Anas, R. Arul Murugan, P. Yogeswaran, S. Hema,
Volume 15, Issue 3 (5-2017)

Soils with poor engineering properties have been a concern to construction engineers because of the need to strike a balance between safety and economy during earthworks construction. This research work investigates the effects of treating a soil having poor geotechnical properties with a bio-enzyme to determine its suitability for use as road pavement layer material. The elemental composition and microstructure of the soil was determined using energy dispersive X-ray spectroscopy and scanning electron microscopy, respectively. The specific gravity, Atterberg limits, compaction, strength and permeability characteristics of the soil was determined for various dosages of the bio-enzyme. The mountain soil is classified as clayey sand and A-2–4, according to unified soil classification and AASHTO classification systems, respectively. With increasing dosage of the bio-enzyme, the plasticity index, maximum dry unit weight and permeability of the soil decreased, while its 28-day California bearing ratio value, unconfined compressive strength and shear strength increased. Consequently, the application of bio-enzyme to the soil improved its plasticity and strength, and reduced its permeability. It, therefore, became more workable and its subgrade quality was improved for use as a road pavement layer material. The stabilized soil can be suitably used for constructing pavement layers of light-trafficked rural (earth) roads, pedestrian walkways and bicycle tracks.

Jun Lin, Guojun Cai, Songyu Liu, Anand J. Puppala, Haifeng Zou,
Volume 15, Issue 3 (5-2017)

The correlations and relationships between electrical resistivity and geotechnical parameters of soils have become very important for site investigation. However, there is a lack of understanding about the relationships between electrical resistivity and geotechnical parameter values. The resistivity piezocone penetration tests and laboratory tests have been conducted for geotechnical investigations of marine clay in Jiangsu province of China to establish quantitative relationships between electrical and geotechnical data. The geotechnical investigation reveals that electrical resistivity values are very low for marine clay in Jiangsu, ranging from 5 to 10 Ω m. The correlations between electrical resistivity and geotechnical parameters are examined using Spearman’s rank correlation test that is a rank-based test for correlation between two variables without any assumption about the data distribution. It was shown that the electrical resistivity has strong bonds with the moisture content, void ratio, salt content and plasticity index. In terms of quantitative relationships, good fitting relationships between electrical resistivity and selected geotechnical parameters are observed. The statistical analysis indicates that the electrical resistivity is a good indirect predictor of selected geotechnical parameters. The data studied demonstrates the usefulness of the in situ resistivity method in geotechnical investigations, which have an advantage over other geotechnical methods in cost performance.

Page 1 from 1     

© 2019 All Rights Reserved | International Journal of Civil Engineering

Designed & Developed by : Yektaweb