Search published articles


Showing 8 results for Pso

S. Bakhtiyari, A. Allahverdi, M. Rais-Ghasemi, A. A. Ramezanianpour, T. Parhizkar, B. A. Zarrabi,
Volume 9, Issue 3 (9-2011)
Abstract

Self Compacting Concrete (SCC) specimens with limestone (L) and quartz (Q) powders were formulated. The influence of the type

of the powder on the properties of fresh and hardened concrete was evaluated. Dense packing theories were used for mix design

of samples. The equation of Fuller and Thompson for particle size distribution (PSD) of aggregates was modified with considering

fine particles and a proper PSD curve was obtained for SCC. Experimental results showed that this method needs use of less

powder content and results in higher strength/cement ratio compared to traditional mixing methods. No significant difference was

observed between the compressive strengths of specimens containing limestone (L-specimens) and quartz (Q-specimens) powders,

with similar proportions of materials. The residual compressive strength of specimens was examined at 500°C and contradictory

behaviors were observed. One Q-specimen suffered from explosive spalling, while no spalling was occurred for L-specimens. On

the other hand, the residual strength of remained Q-specimens showed considerable increase compared to L-specimens. The results

show the necessity for more detailed investigations considering different effective parameters.


Ali Kaveh, Omid Sabzi,
Volume 9, Issue 3 (9-2011)
Abstract

This article presents the application of two algorithms: heuristic big bang-big crunch (HBB-BC) and a heuristic particle swarm

ant colony optimization (HPSACO) to discrete optimization of reinforced concrete planar frames subject to combinations of

gravity and lateral loads based on ACI 318-08 code. The objective function is the total cost of the frame which includes the cost

of concrete, formwork and reinforcing steel for all members of the frame. The heuristic big bang-big crunch (HBB-BC) is based

on BB-BC and a harmony search (HS) scheme to deal with the variable constraints. The HPSACO algorithm is a combination of

particle swarm with passive congregation (PSOPC), ant colony optimization (ACO), and harmony search scheme (HS)

algorithms. In this paper, by using the capacity of BB-BC in ACO stage of HPSACO, its performance is improved. Some design

examples are tested using these methods and the results are compared.


Jiuping Xu, Pei Wei,
Volume 10, Issue 1 (3-2012)
Abstract

In this paper, a location allocation (LA) problem in construction and demolition (C&D) waste management (WM) is studied. A bi-level model for this problem under a fuzzy random environment is presented where the upper level is the governments who sets up the processing centers, and the lower level are the administrators of different construction projects who control C&D waste and the after treatment materials supply. This model using an improved particle swarm optimization program based on a fuzzy random simulation (IPSO-based FRS) is able to handle practical issues. A case study is presented to illustrate the effectiveness of the proposed approach. Conclusions and future research directions are discussed.


R. Kamyab Moghadas, E. Salajegheh,
Volume 11, Issue 2 (6-2013)
Abstract

The present paper focuses on size optimization of scallop domes subjected to static loading. As this type of space structures includes a large number of the structural elements, optimum design of such structures results in efficient structural configurations. In this paper, an efficient optimization algorithm is proposed by hybridizing particle swarm optimization (PSO) algorithm and cellular automata (CA) computational strategy, denoted as enhanced particle swarm optimization (EPSO) algorithm. In the EPSO, the particles are distributed on a small dimensioned grid and the artificial evolution is evolved by a new velocity updating equation. In the new equation, the difference between the design variable vector of each site and an average vector of its neighboring sites is added to the basic velocity updating equation. This new term decreases the probability of premature convergence and therefore increases the chance of finding the global optimum or near global optima. The optimization task is achieved by taking into account linear and nonlinear responses of the structure. In the optimization process considering nonlinear behaviour, the geometrical and material nonlinearity effects are included. The numerical results demonstrate that the optimization process considering nonlinear behaviour results in more efficient structures compared with the optimization process considering linear behaviour. .
A. Kaveh, A. Nasrolahi,
Volume 12, Issue 1 (3-2014)
Abstract

In this paper, a new enhanced version of the Particle Swarm Optimization (PSO) is presented. An important modification is made by adding probabilistic functions into PSO, and it is named Probabilistic Particle Swarm Optimization (PPSO). Since the variation of the velocity of particles in PSO constitutes its search engine, it should provide two phases of optimization process which are: exploration and exploitation. However, this aim is unachievable due to the lack of balanced particles’ velocity formula in the PSO. The main feature presented in the study is the introduction of a probabilistic scheme for updating the velocity of each particle. The Probabilistic Particle Swarm Optimization (PPSO) formulation thus developed allows us to find the best sequence of the exploration and exploitation phases entailed by the optimization search process. The validity of the present approach is demonstrated by solving three classical sizing optimization problems of spatial truss structures.
H. Shahnazari, M. A. Shahin, M. A. Tutunchian,
Volume 12, Issue 1 (1-2014)
Abstract

Due to the heterogeneous nature of granular soils and the involvement of many effective parameters in the geotechnical behavior of soil-foundation systems, the accurate prediction of shallow foundation settlements on cohesionless soils is a complex engineering problem. In this study, three new evolutionary-based techniques, including evolutionary polynomial regression (EPR), classical genetic programming (GP), and gene expression programming (GEP), are utilized to obtain more accurate predictive settlement models. The models are developed using a large databank of standard penetration test (SPT)-based case histories. The values obtained from the new models are compared with those of the most precise models that have been previously proposed by researchers. The results show that the new EPR and GP-based models are able to predict the foundation settlement on cohesionless soils under the described conditions with R2 values higher than 87%. The artificial neural networks (ANNs) and genetic programming (GP)-based models obtained from the literature, have R2 values of about 85% and 83%, respectively which are higher than 80% for the GEP-based model. A subsequent comprehensive parametric study is further carried out to evaluate the sensitivity of the foundation settlement to the effective input parameters. The comparison results prove that the new EPR and GP-based models are the most accurate models. In this study, the feasibility of the EPR, GP and GEP approaches in finding solutions for highly nonlinear problems such as settlement of shallow foundations on granular soils is also clearly illustrated. The developed models are quite simple and straightforward and can be used reliably for routine design practice.
Yanfang Ma, Jiuping Xu,
Volume 12, Issue 2 (6-2014)
Abstract

In this paper, a bi-level decision making model is proposed for a vehicle routing problem with multiple decision-makers (VRPMD) in a fuzzy random environment. In our model, the objective of the leader is to minimize total costs by deciding the customer sets, while the follower is trying to minimize routing costs by choosing routes for each vehicle. Demand for each item has considerable uncertainty, so customer demand is considered a fuzzy random factor in this paper. After setting up the bi-level programming model for VRPMD, a bi-level global-local-neighbor particle swarm optimization with fuzzy random simulation (bglnPSO-frs) is developed to solve the bi-level fuzzy random model. Finally, the proposed model and method are applied to construction material transportation in the Yalong River Hydropower Base in China to illustrate its effectiveness.
Farzin Kalantary, Javad Sadoghi Yazdi, Hossein Bazazzadeh,
Volume 12, Issue 3 (7-2014)
Abstract

In comparison with other geomaterials, constitutive modeling of rockfill materials and its validation is more complicated. This is principally due to the existence of more intricate phenomena such as particle crushing, as well as laboratory test limitations. These issues have necessitated developing more complex constitutive models, with many parameters. Regardless of the type of model, the calibrations of the parameters in such models are considered as one of the most important and challenging steps in the application of the model. Therefore, the need for comprehensive and rapid methods for evaluation of optimum parameters of the models is deemed necessary. In this paper, a Neuro-Fuzzy model in conjunction with Particle Swarm Optimization (PSO) is used for calibration of the twelve parameters of Hierarchical Single Surface (HISS) constitutive model based on the Disturbed State Concept (DSC). The Neuro-fuzzy system is used to provide a high-degree nonlinear regression model between the deviatoric stress and volumetric strain versus axial strain that has been obtained from consolidated drained large scale tri-axial tests on rockfill materials. The model parameters are determined in an iterative optimized loop with PSO and ANFIS such that the equations of DSC/HISS are simultaneously satisfied. Material data used in this study are gathered from the results of large tri-axial tests for two rockfill dams in Iran. It is shown that the proposed method has higher accuracy and more importantly its robustness is exhibited through test predictions. The achieved improvement is substantiated in a comparison with the more widely used "Least-Square" method.

Page 1 from 1     

© 2019 All Rights Reserved | International Journal of Civil Engineering

Designed & Developed by : Yektaweb