Search published articles


Showing 40 results for Numerical Model

Sabagh Yazdi S.r., Mohammad Zadeh Qomi M.,
Volume 2, Issue 2 (6-2004)
Abstract

A numerical model is introduced for solution of shallow water flow equations with negligible physical dissipations due to canal roughness and turbulence effects. Two-dimensional velocity distribution and water depth of the flow field are computed by solving the depth average equations of continuity and motion. The equations are converted to discrete form using cell vertexfinite volume method on triangular unstructured mesh. The formulation of the added numericalviscosity is chosen in such a way that preserves the accuracy of numerical results. The accuracy ofthe model is assessed by computing the challenging case of inviscid frictionless flow in a canal with a 1800 bend. The computed results are compared with analytical solution which is obtainedfrom potential flow theory. Simulation of frictionless free surface flow in a constant width meandering sinusoidal canal is considered as an application of the model. The algorithm produced encouraging results.
A. Khayyer, A. Yeganeh Bakhtiari, A. Ghaheri, T. Asano,
Volume 2, Issue 4 (12-2004)
Abstract

A two-dimensional numerical model has been developed to study wave breaking on a sloping beach. The basic elements of numerical model are Reynolds Averaged Navier-Stokes (RANS) equations that describe the mean flow motion of a turbulent flow a k turbulence closure model that describes the turbulent transport and dissipation process an efficient technique (VOF- Volume Of Fluid method) for tracking the free surface motion and a new scheme developed by Lin and Liu (1999) for wave generation. Shoaling, breaking and overturning of solitary wave on a slope of 1/16 have been studied with the main emphasis on turbulence characteristics. Turbulence characteristics i.e., turbulence kinetic energy, k turbulence dissipation rate, turbulence production, pr turbulence eddy viscosity, vt and their spatial distribution during the breaking process have been discussed in great details. Spatial distribution of turbulence characteristics and the order of magnitude have been found to be in agreement with existing experimental and numerical studies. The main characteristic of plunging breaking waves, the shoreward advective transport of turbulence, has also been investigated and numerically proved.
M.h. Bagheripour, S.m. Marandi,
Volume 3, Issue 2 (6-2005)
Abstract

Arational approach is introduced for numerical modeling of unbounded soil foundations based on coupled dynamic periodic infinite and conventional finite elements (IFE-FE). The model can be applied for analysis of various dynamic problems in geomechanics, especially in Soil Structure Interaction (SSI), where determination of stiffness properties and response of unbounded soil domains are of prime importance. In numerical SSI analysis, there exists important problems a) the discretization of natural soil foundation, especially defining the boundaries to prevent reflecting body waves and avoiding spurious results, b) the definition of the matrices related to the soils impedance functions which are essentially dependant on the excitation frequency, c) the evaluation of free field motion of the natural foundation, especially those of irregular geometry and material diversity. An efficient way and integrated solution to these important problems is found to be the use of periodic infinite elements. The wave equation of motion is derived numerically for discretization of the soil domain. Shape functions and mapping coordinates for dynamic periodic infinite elements are presented in this paper. The accuracy of the IFE is examined for the evaluation of free field motion of a visco-elastic soil foundation. Derivation of impedance function is shown and leads to the determination of dynamic stiffness characteristics of the unbounded soil medium including spring and dashpot coefficients. Application of the approach introduced here is shown by analysis of SSI for a semi-tall building subjected to earthquake loading. Other advantages of the approach are the substantial reduction in degrees of freedom involved in numerical SSI analysis, the computational time and costs without sacrificing the accuracy of the results.
M.h. Baziar, Sh. Salemi, T. Heidari,
Volume 4, Issue 3 (9-2006)
Abstract

Seismic behavior of a rockfill dam with asphalt-concrete core has been studied utilizing numerical models with material parameters determined by laboratory tests. The case study selected for these analyses, is the Meyjaran asphalt core dam, recently constructed in Northern Iran, with 60 m height and 180 m crest length. The numerical analyses have been performed using a nonlinear three dimensional finite difference software and various hazard levels of earthquakes. This study shows that due to the elasto-plastic characteristics of the asphalt concrete, rockfill dams with asphalt concrete core behave satisfactorily during earthquake loading. The induced shear strains in the asphalt core, for the case presented in this research, are less than 1% during an earthquake with amax=0.25g and the asphalt core remains watertight. Due to large shear deformations caused by a more severe earthquake with amax=0.60g, some cracking may occur towards the top of the core (down to 5-6 m), and the core permeability may increase in the top part, but the dam is safe.
M.b. Javanbarg, A.r. Zarrati, M.r. Jalili, Kh. Safavi,
Volume 5, Issue 1 (3-2007)
Abstract

In the present study a quasi 2-D numerical model is developed for calculating air concentration distribution in rapid flows. The model solves air continuity equation (convection diffusion equation) in the whole flow domain. This solution is then coupled with calculations of the free surface in which air content in the flow is also considered. To verify the model, its results are compared with an analytical solution as well as a 2-D, numerical model and close agreement was achieved. The model results were also compared with experimental data. This comparison showed that the decrease in air concentration near the channel bed in an aerated flow could be well predicted by the model. The present simple numerical model could therefore be used for engineering purposes.
Shahram Feizee Masouleh, Kazem Fakharian,
Volume 6, Issue 3 (9-2008)
Abstract

A finite-difference based continuum numerical model is developed for the pile-soil dynamic response during pile driving. The model is capable of simulating the wave propagation analysis along the pile shaft and through the soil media. The pile-soil media, loading and boundary conditions are such that axisymmetric assumption seems to be an optimized choice to substantially reduce the analysis time and effort. The hydrostatic effect of water is also considered on the effective stresses throughout the soil media and at the pilesoil interface. The developed model is used for signal matching analysis of a well-documented driven pile. The results showed very good agreement with field measurements. It is found that the effect of radiation damping significantly changes the pile-soil stiffness due to the hammer blow. The pile tip response shows substantial increase in soil stiffness below and around the pile tip due to driving efforts.
M.h. Baziar, A. Ghorbani, R. Katzenbach,
Volume 7, Issue 3 (9-2009)
Abstract

The pile-raft foundation is a combination of a raft foundation with piles. Pile-raft foundation has been widely designed, assuming all structure loads to be transferred to piles without considering contribution of the load taken by contact surface between raft and soil. Methods of analysis currently used in practice are based upon relatively conservative assumptions of soil behavior or on the less realistic soil-structure interaction. In this study the bearing -settlement behavior of combined pile-raft foundations on medium dense sand was investigated. 1g physical model test was performed on a circular rigid raft underpinned with four model piles. Numerical simulation was also carried out on the model test, using FLAC-3D, to show compatibility of the numerical analysis with the test. The obtained results showed very good accuracy of the numerical method used in this study as long as the applied load does not exceed the working load, while the performance of numerical model was relatively good for the loads beyond working load.
F. Hajivalie, A. Yeganeh Bakhtiary,
Volume 9, Issue 1 (3-2011)
Abstract

In this paper, a two-dimensional Reynolds Averaged Navier-Stokes (RANS) model is developed to simulate the shoaling, breaking and overtopping of a solitary wave over a vertical breakwater. Turbulence intensity is described by using a k turbulence closure model and the free surface configuration is tracked by Volume Of Fluid (VOF) technique. To validate the numerical model the simulation results is compared with the Xie (1981) experimental data and a very good agreement between them is observed. The results revealed that wave height and wave energy decrease considerably during the reflection from vertical wall, which illustrates a considerable energy lost during the impaction and wave overtopping process. The turbulence production during the broken wave interaction with vertical breakwater is very significant consequently the vertical breakwater undergoes sever turbulent and dynamic drag force.


A. R. Majidi, A.a. Mirghasemi, M. Arabshahi,
Volume 9, Issue 4 (12-2011)
Abstract

In the current study, an effort is made to determine three dimensional bearing capacity of rectangular foundations using Discrete

Element Method. The soil mass is modeled as discrete blocks connected with Winkler springs. Different factors affect the geometry

of failure surface. Six independent angles are used to define the failure surface. By trial and error, the optimum shape of failure

surface beneath the foundation can be found. The paper includes the derivation of the governing equations for this DEM based

formulation in three dimensional state as well as parametric sensitivity analyses and comparison with other methods. Moreover,

using the current method, bearing capacity coefficients are presented for various friction angles and foundation aspect ratios.


S. N. Moghaddas Tafreshi, Gh. Tavakoli Mehrjardi, M. Ahmadi,
Volume 9, Issue 4 (12-2011)
Abstract

The results of laboratory model tests and numerical analysis on circular footings supported on sand bed under incremental

cyclic loads are presented. The incremental values of intensity of cyclic loads (loading, unloading and reloading) were applied

on the footing to evaluate the response of footing and also to obtain the value of elastic rebound of the footing corresponding

to each cycle of load. The effect of sand relative density of 42%, 62%, and 72% and different circular footing area of 25, 50,

and 100cm2 were investigated on the value of coefficient of elastic uniform compression of sand (CEUC). The results show that

the value of coefficient of elastic uniform compression of sand was increased by increasing the sand relative density while with

increase the footing area the value of coefficient of elastic uniform compression of sand was decreases. The responses of footing

and the quantitative variations of CEUC with footing area and soil relative density obtained from experimental results show a

good consistency with the obtained numerical result using “FLAC-3D”.


R. Attarnejad, F. Kalateh,
Volume 10, Issue 1 (3-2012)
Abstract

This paper describes a numerical model and its finite element implementation that used to compute the cavitation effects on

seismic behavior of concrete dam and reservoir systems. The system is composed of two sub-systems, namely, the reservoir and

the dam. The water is considered as bilinear compressible and inviscid and the equation of motion of fluid domain is expressed

in terms of the pressure variable alone. A bilinear state equation is used to model the pressure–density relationship of a cavitated

fluid. A standard displacement finite element formulation is used for the structure. The Structural damping of the dam material

and the radiation damping of the water and damping from foundation soil and banks have been incorporated in the analysis. The

solution of the coupled system is accomplished by solving the two sub-systems separately with the interaction effects at the damreservoir

interface enforced by a developed iterative scheme. The developed method is validated by testing it against problem for

which, there is existing solution and the effects of cavitation on dynamic response of Konya gravity dam and Morrow Point arch

dam subjected to the first 6 s of the May 1940 El-Centro, California earthquake, is considered. Obtained results show that impact

forces caused by cavitation have a small effect on the dynamic response of dam-reservoir system.


R. Mahin Roosta, A. Alizadeh,
Volume 10, Issue 2 (6-2012)
Abstract

In the first impounding of rockfill dams, additional settlements occur in upstream side in saturated rockfills due to collapse
phenomenon even high rainy seasons can cause additional deformation in the dumped rockfills. Unfortunately these
displacements are not taken into account in the conventional numerical models which are currently used to predict embankment
dam behavior during impounding. In this paper to estimate these displacements, strain hardening-strain softening model in Flac
is modified based on the laboratory tests, in which same impounding process in such dams is considered. Main feature of the
model is reproduction of nonlinear behavior of rockfill material via mobilized shear strength parameters and using collapse
coefficient to display induced settlement due to inundation. This mobilization of shear strength parameters associated with some
functions for dilatancy behavior of rockfill are used in a finite difference code for both dry and wet condition of material. Collapse
coefficient is defined as a stress dependent function to show stress release in the material owing to saturation. To demonstrate
how the model works, simulation of some large scale triaxial tests of rockfill material in Gotvand embankment dam is presented
and results are compared with those from laboratory tests, which are in good agreement. The technique could be used with any
suitable constitutive law in other coarse-grained material to identify collapse settlements due to saturation


Y. L. Luo,
Volume 11, Issue 1 (5-2013)
Abstract

The occurrence of piping failures in earth structures demonstrates the urgency and importance of studying piping. With this

intention, a new piping model was developed in the framework of continuum mixture theory. Assuming that porous media are

comprised of solid skeleton phase, fluid phase and fluidized fine particles phase, the fluidized fine particles phase is considered

to be a special solute migrating with the fluid phase. The three phases interact while being constrained by the mass conservation

equations of the three phases, and a sink term was introduced into the mass conservation equation of the solid skeleton phase to

describe the erosion of fluidized fine particles, then a new continuum fluid-particle coupled piping model was established and

validated. The validation indicates that the proposed model can predict the piping development of complicated structures under

complex boundary and flow conditions, and reflect the dynamic changes of porosity, permeability and pore pressure in the

evolution of piping.


M. Mortazavi Zanjani, A. Soroush,
Volume 11, Issue 2 (11-2013)
Abstract

This paper presents results of a thorough study on the phenomenon of rupture propagation of reverse faults from the bedrock

foundation through homogeneous clayey embankments, mainly at the end of construction, with complementary analyses for the

steady state seepage through the embankment. The study is performed by means of numerical analyses with a nonlinear Finite

Element Method, verified beforehand through simulating fault propagations in an existing horizontal soil layer experiment.

Multiple cases considering three slopes & three clayey soils for the embankment and five fault dip angles, activated in several

locations of base of the embankment, are analyzed. The results show that ruptures in the embankment follow optimal paths to

reach the surface and their near-surface directions are predictable with respect to corresponding theories of classical soil

mechanics. Various types of rupture in the embankment are produced on the basis of the rupture types, the embankment base is

divided into three distinguishable zones, which can be used for interpretation of fault ruptures behavior. The effects of materials

and slope of the embankment, fault dip angle, and fault’s point of application in the bedrock-soil interface on the rupture paths

are studied in depth.


M. Fadaee, M.k. Jafari, M. Kamalian, M. Moosavi, A. Shafiee,
Volume 11, Issue 2 (11-2013)
Abstract

During past earthquakes, many instances of building damage as a result of earthquake surface fault rupture have been observed.

The results of investigating a potential mitigation scheme are presented in this paper. Such plan provides a wall in the soil with

the aim of surface displacement localization in the narrow pre-determined location. This may reduce the risk of the future rupture

downstream the wall. To evaluate the efficiency of the method, this paper (i) provides validation through successful class “A”

predictions of 1g model tests for fault deviation by weak wall and (ii) conducts sensitivity analyses on fault position, fault offset

and wall shear strength. It is shown that wall can be designed to deviate rupture path even downstream of the wall can be

protected.


Y.y. Chang, C.j. Lee, W.c. Huang, W.j. Huang, M.l. Lin, W.y. Hung, Y. H. Lin,
Volume 11, Issue 2 (11-2013)
Abstract

This study presents a series of physical model tests and numerical simulations using PFC2D (both with a dip slip angle=60° and

a soil bed thickness of 0.2 m in model scale)at the acceleration conditions of 1g, 40g, and 80 g to model reverse faulting. The soil

deposits in prototype scale have thicknesses of 0.2 m, 8 m, and 16 m, respectively. This study also investigates the evolution of a

surface deformation profile and the propagation of subsurface rupture traces through overlying sand. This study proposes a

methodology for calibrating the micromechanical material parameters used in the numerical simulation based on the measured

surface settlements of the tested sand bed in the self-weight consolidation stage. The test results show that steeper surface slope

on the surface deformation profile, a wider shear band on the major faulting-induced distortion zone, and more faulting appeared

in the shallower depths in the 1-g reverse faulting model test than in the tests involving higher-g levels. The surface deformation

profile measured from the higher-g physical modeling and that calculated from numerical modeling show good agreement. The

width of the shear band obtained from the numerical simulation was slightly wider than that from the physical modeling at the

same g-levels and the position of the shear band moved an offset of 15 mm in model scale to the footwall compared with the results

of physical modeling.


N. Abedimahzoon, A. Lashteh Neshaei,
Volume 11, Issue 4 (12-2013)
Abstract

In this paper, a new approach is presented for estimating the vertical and horizontal distribution of undertow in the surf zone for reflective beaches. The present model is a modification of the original model presented by Okayasu et al., (1990) for natural, non-reflective beaches to include the effect of partially reflected waves. The nonlinearity of waves, wave-current interaction and nonlinear mass drift of the incident wave are also included in the present model. The results of experimental investigation and model development show that existence of reflective conditions on beaches results in a reduction in the magnitude of undertow and modifies its distribution across the beach profile. Comparison of the results by those obtained from the experiments clearly indicates that by taking the nonlinearity and wave-current interaction, the predictions of undertow in the surf zone are much improved. In particular, due to the effect of turbulence induced by wave breaking for nonlinear waves, the predicted results show more consistence with the measurements.
J. Nazari Afshar, M. Ghazavi,
Volume 12, Issue 1 (1-2014)
Abstract

The Stone-column is a useful method for increasing the bearing capacity and reducing settlement of foundation soil. The prediction of accurate ultimate bearing capacity of stone columns is very important in soil improvement techniques. Bulging failure mechanism usually controls the failure mechanism. In this paper, an imaginary retaining wall is used such that it stretches vertically from the stone column edge. A simple analytical method is introduced for estimation of the ultimate bearing capacity of the stone column using Coulomb lateral earth pressure theory. Presented method needs conventional Mohr-coloumb shear strength parameters of the stone column material and the native soil for estimation the ultimate bearing capacity of stone column. The validity of the developed method has been verified using finite element method and test data. Parametric studies have been carried out and effects of contributing parameters such as stone column diameter, column spacing, and the internal friction angle of the stone column material on the ultimate bearing capacity have been investigated.
M. B. Esfandiari Sowmehsaraei, R. Jamshidi Chenari,
Volume 12, Issue 1 (1-2014)
Abstract

Soil reinforced with fiber shows characteristics of a composite material, in which fiber inclusion has a significant effect on soil permeability. Concerning to the higher void ratio of carpet fibers, at first stages it may be expected that an increase in fiber content of the reinforced soil would result in an increase in permeability of the mixture. However, the present article demonstrates that fiber inclusion will decrease the permeability of sand-fiber composite.A series of constant head permeability tests have been carried out to show the effects and consequently, a new system of phase relationships was introduced to calculate the dry mass for the sand portion of the composite. Monte Carlo simulation technique adopted with finite element theory was employed to back calculate the hydraulic conductivity of individual porous fibers from the laboratory test results. It was observed that the permeability coefficient of the porous fibers are orders of magnitude less than the skeletal sand portion due to the fine sand particle entrapment and also the fiber volume change characteristics.
E. Lotfi, S. Delfan, A. Hamidi, H. Shahir, Gh. Fardi,
Volume 12, Issue 1 (1-2014)
Abstract

In saturated soils, heating induces thermal expansion of both grains and the pore fluid. Lower thermal expansion coefficient of aggregates results in the increase of pore pressure and reduction of the effective stress besides subsequent volume changes due to the dissipation of pore pressure and heat transfer. Dissipation of thermally induced pore pressure with time is a coupled thermo-hydro-mechanical (THM) phenomenon, involving gradients of pore pressure and temperature, hydraulic and thermal flows within the mass of soil and changes in the mechanical properties with temperature. The objective of this paper is presentation of a numerical method to determine the effect of temperature on consolidation of clays. In this regard, the finite element code, PISA is used for one dimensional THM analysis of porous media. The analysis performed using both linear elastic and elastoplastic Cam clay models. Modified Cam clay model was applied in elastoplastic analysis. Variation of temperature, displacements and pore pressure determined with time and compared with numerical solutions of other researchers. Also it was indicated that implementation of coupled THM analysis yields better results for displacements compared to the hydro mechanical (HM) one. Application of elastoplastic constitutive model instead of linear elastic one indicated that preconsolidation pressure has an important effect on results of analysis.

Page 1 from 2    
First
Previous
1
 

© 2019 All Rights Reserved | International Journal of Civil Engineering

Designed & Developed by : Yektaweb