Search published articles


Showing 12 results for Mixing

I. Rasoolan, S.a. Sadrnejad, A.r. Bagheri,
Volume 7, Issue 2 (6-2009)
Abstract

Concrete is a heterogeneous material with a highly non linear behavior, which is mainly caused by the

initiation and propagation of micro cracks within the several components of the material. The damage behavior of

concrete is usually simulated on the macro scale using complex constitutive models. The direct determination of the

homogenized material parameters is often difficult and sometimes impossible. Furthermore these materials models do

not explicitly represent effects and bond behaviors of interfaces between the several components. So in order to predict

of concrete behaviors and characteristics, it should be modeled as a three phase composite material consisting of

aggregate, interfacial transition zone (ITZ) and cement paste. The size and distribution of aggregate affects concrete

characteristics. Because of the random distribution and size variation of aggregate in concrete, the modeling of

concrete behavior based on component in meso structure is difficult and so we must use simple assumption. In this

paper with mixing design and grading curve we developed a simple method to replace real aggregate with equivalent

sphere aggregate with effective diameter. So we can use simple methods instead of complex numeral and randomness

or x ray methods to find effective diameter and use it to determine two arrangements with maximum and minimum

aggregate volume as a repeatable basical element .As a result we can use this element to modeling the behavior of

sample concrete in meso scale and three phases.


S. Bakhtiyari, A. Allahverdi, M. Rais-Ghasemi, A. A. Ramezanianpour, T. Parhizkar, B. A. Zarrabi,
Volume 9, Issue 3 (9-2011)
Abstract

Self Compacting Concrete (SCC) specimens with limestone (L) and quartz (Q) powders were formulated. The influence of the type

of the powder on the properties of fresh and hardened concrete was evaluated. Dense packing theories were used for mix design

of samples. The equation of Fuller and Thompson for particle size distribution (PSD) of aggregates was modified with considering

fine particles and a proper PSD curve was obtained for SCC. Experimental results showed that this method needs use of less

powder content and results in higher strength/cement ratio compared to traditional mixing methods. No significant difference was

observed between the compressive strengths of specimens containing limestone (L-specimens) and quartz (Q-specimens) powders,

with similar proportions of materials. The residual compressive strength of specimens was examined at 500°C and contradictory

behaviors were observed. One Q-specimen suffered from explosive spalling, while no spalling was occurred for L-specimens. On

the other hand, the residual strength of remained Q-specimens showed considerable increase compared to L-specimens. The results

show the necessity for more detailed investigations considering different effective parameters.


E. Alamatian, M. R. Jaefarzadeh,
Volume 10, Issue 1 (3-2012)
Abstract

In this article, the two-dimensional depth-averaged Saint Venant equations, including the turbulence terms, are solved in a

supercritical flow with oblique standing waves. The algorithm applies the finite volume Roe-TVD method with unstructured

triangular cells. Three depth-averaged turbulence models, including the mixing length, k-&epsilon and algebraic stress model (ASM),

are used to close the hydrodynamic equations. The supercritical flow in a channel downstream from a side-baffle in plan is then

simulated, and the numerical results are compared with the data obtained from a laboratory model. The application of different

models demonstrates that the consideration of turbulence models improves the results at the shock wave positions. The qualitative

study of the results and error analysis indicates that the ASM offers the most desirable solutions in comparison with the other

models. However, our numerical experiments show that, amongst the source term components, the negligence of turbulence terms

produces the least error in the depth estimation in comparison with the removal of the bed slope or bed friction terms.


H. Famili, M. Khodadad Saryazdi, T. Parhizkar,
Volume 10, Issue 3 (9-2012)
Abstract

Self-desiccation is the major source of autogenous shrinkage and crack formation in low water-binder ratio (w/b) concretes

which can be reduced by internal curing. In this paper performance of high strength self consolidating concrete (HS-SCC) with

w/b of 0.28 and 0.33 including autogenous shrinkage, drying shrinkage, compressive strength, and resistance to freezing-thawing

was investigated. Then, for the purpose of internal curing, 25% of normal weight coarse aggregate volume was replaced with

saturated lightweight aggregate (LWA) of the same size and its effects on the material properties was studied. Two modes of

external curing, moist and sealed, were applied to test specimens after demoulding. Autogenous shrinkage from 30 minutes to 24

hours after mixing was monitored continuously by a laser system. The initial and final setting time were manifested as a change

of the slope of the obtained deformation curves. Shrinkage after initial setting was 860 and 685 microstrain (&mu&epsilon) for 0.28 and 0.33

w/b mixtures, respectively. The saturated LWA reduced these values to 80 and 295 &mu&epsilon, respectively. By LWA Substitution the 28-

day compressive strength of 0.28 w/b mixture was reduced from 108 to 89 and 98 to 87 MPa for moist and sealed cured specimen,

respectively. The corresponding values for 0.33 w/b mixture was 84 to 80 and 82 to 70 MPa. Shrinkage of 0.28 w/b mixture

without LWA after moist and sealed cured specimen dried for 3 weeks was about 400 &mu&epsilon. Shrinkage of moist and sealed cured

specimen containing LWA was reduced 9% and 25%, respectively. On the contrary for 0.33 w/b mixture an increase was noticed.

Freezing-thawing resistance was improved by sealed curing, decreasing w/b and substituting LWA.


Kwang-Suek Oh, Tae-Hyung Kim,
Volume 11, Issue 2 (11-2013)
Abstract

This study was conducted to determine the effect of vibration on the curing and compressive strength of lightweight air-trapped

soil (ATS). ATS is manufactured by mixing cement with water and sand and injecting bubbles into the mixture. It is light as

compared to regular soil, can reduce the weight on the ground, and has high fluidity. If ATS is used at construction sites with

many vibration sources, such as pile driving, blasting, and construction machinery, the effect of vibration needs to be seriously

considered. If a road is expanded using ATS to reduce traffic congestion, the ATS quality may decrease because of vibration

generated by traffic moving on the road. In particular, because ATS contains many air bubbles and needs time for curing, the

effect of vibration can be greater than expected. Therefore, the effect of vibration on ATS was evaluated during the curing process

by conducting unconfined compression tests on samples prepared with different values of variables including vibration velocity,

starting vibration time, and mixing ratio. Vibration velocities of 0.25 and 0.50 cm/s did not greatly affect the strength. However,

vibration velocities of above 2.50 cm/s significantly affected the decrease in strength, and the starting vibration time also had a

clear effect on specimens cured for less than 2 hours.


Jui-Chao Kuo, Teng-Yi Kuo, Cheng-Han Wu, Shih-Heng Tung, Ming-Hsiang Shih , Wen-Pei Sung, Weng-Sing Hwang,
Volume 12, Issue 2 (6-2014)
Abstract

In this study digital image correlation (DIC) technique combined with a high speed video system was used to predict movement of particles in a water model. Comparing with Particle-image velocimetry (PIV) technique, it provides a low cost alternative approach to visualize flow fields and was successfully employed to predict the movement of particles in a water model at different submergence depth using gas injection. As the submergence depth increases, the number of the exposed eye is reduced accordingly. At 26.4 cm submergence depth, an exposed eye was found at 1/3 of the submergence depth, whereas two exposed eyes were observed at 1/2 depth and near the bottom wall at 24 cm submergence depth.
Raja Rizwan Hussain, M. Wasim, M. A. Baloch,
Volume 13, Issue 1 (3-2015)
Abstract

This paper aims at finding the long term coupled effect of high temperature and constant high relative humidity on the corrosion rehabilitated patches of chloride contaminated steel reinforced concrete. This paper is an extension of previous research in which the authors experimentally corroborated re-corrosion in the repaired reinforced concrete (RC) patches in the form of macro-cells. In previous research, the coupled effect was investigated by laboratory controlled experimentation at varying temperature of 30, 40 and 50°C and a high ambient relative humidity of 85% in environmental control chambers for duration of one year. The specimens were prepared having total chloride concentration in mixing water 3% and 5 % by mass of binder. In this present research paper, the two year results of the same specimens are presented to get a deep insight of the long term phenomenon of macro-cell corrosion under the coupled effect of high temperature and humidity on repaired RC patches.
B.a. Mir,
Volume 13, Issue 3 (12-2015)
Abstract

Fly ash is one of the most plentiful and versatile of the industrial by-products. At present, nearly 150 million tonnes of fly ash is being generated annually in India posing dual problem of environmental pollution and difficulty in disposal. This calls for establishing strategies to use the same effectively and efficiently. However, it is only in geotechnical engineering applications such as the construction of embankments/dykes, as back fill material, as a sub-base material etc., its large-scale utilization is possible either alone or with soil. Soil stabilization can be achieved by various means such as compaction, soil replacement, chemical improvement, earth reinforcement etc. Usually, in the case of clay soils, chemical improvement is commonly most effective since it can strengthen the soil, to remove its sensitivity both to water and its subsequent stress history. Among chemical means or additives, fly ash/lime provides an economic and powerful means of improvement, as demonstrated by the significant transformation that is evident on mixing with heavy clay. In the present investigation, different percent fly ashes (10%, 20%, 40%, 60% & 80%) were added to a highly expansive soil from India by dry weight of the natural soil, and subjected to various tests. The important properties that are necessary for using fly ash in many geotechnical applications are index properties, compaction characteristics, compressibility characteristics, permeability and strength. Based on test results, it has been found that using fly ash for improvement of soils has a two-fold advantage. First, to avoid the tremendous environmental problems caused by large scale dumping of fly ash and second, to reduce the cost of stabilization of problematic/marginal soils and improving their engineering properties for safe construction of Engineering Structures. 


Amin Falamaki, Hossein Tavallali, Mahnaz Eskandari, Rezanejad Sharbanoo Farahmand,
Volume 14, Issue 2 (3-2016)
Abstract

Soil contamination by heavy metals is a worldwide environmental challenging issue. Due to the industrial activities, a site located in North West of Shiraz (Fars Province, Iran) has the potential to be contaminated by different heavy metals. The objective of this study was to assess the effectiveness of dicalcium phosphate (DCP) and sodium tripoly phosphate (STPP) for immobilizing lead, copper and cadmium in contaminated soils. Leaching column tests performed on the soil without any stabilizing agent demonstrated a uniform leachate of metals in the effluent during the experimental period. After mixing DCP or STTP with the contaminated soils, the release of all three heavy metals through the effluent was ceased. The results further indicated that 0.1 to 0.2 percent by weight of these stabilizers is effective for immobilizing of applied metals through the experimental soil. Penetration of acid sulfuric solution with pH of 5 had no influence on stabilizing efficiency and almost whole the applied heavy metals seem to be immobilized through the soil media.


Takayoshi Maruyama, Hideaki Karasawa, Shin-Ichiro Hashimoto, Shigeyuki Date,
Volume 15, Issue 2 (3-2017)
Abstract

Pre-cast concrete products are sometimes manufactured in 2 cycles per day with one mold for the purpose of productivity improvement and so forth. In such a case, from the point of view of securing early-time strength which is required at the time of demolding, it is necessary to increase steam curing temperature and then the likelihood of temperature cracking becomes a concern. Moreover, self-compacting concrete (hereinafter refer as “SCC”) is increasingly used to which ground granulated blast-furnace slag is added, in consideration of environment surrounding a plant or operation environment. One choice then is to admix expansive agent in order to prevent cracking due to autogenous shrinkage. However, there is some possibility that high temperature curing required for 2 cycles per day production likely enhances cracking due to expansive agent admixing. In this study, the cause of cracking of large-sized pre-cast concrete products with high amount of expansive agent, in comparison of 1 cycle per day and 2 cycles per day productions was investigated.

As the result, it was confirmed that high temperature steam curing and early demolding of 2 cycles per day production promote thermal stress cracking in contrast to 1 cycle per day production, and at the same time, un expected cracking along main reinforcement is caused by excess expansion due to inappropriate curing of expansive agent.


Ali Topal, Julide Oner, Burak Sengoz, Peyman Aghazadeh Dokandari, Derya Kaya,
Volume 15, Issue 4 (6-2017)
Abstract

In recent years, environmental protection is increasingly becoming a major issue in transportation including asphalt production. Despite the fact that Hot Mix Asphalt (HMA) is widely used around the world some recent studies suggest using Warm Mix Asphalt (WMA) technology that reduces the production and placement temperature of asphalt mixes. Currently, a common way of producing WMA is through the utilization of additives. This paper firstly characterizes the effect of WMA additives (organic, chemical, water containing additives) on base bitumen properties. Following the determination of optimum bitumen content of the mixtures with different WMA additives through Marshall Test, Hamburg Wheel Tracking Device is used to measure the permanent deformation characteristics of WMA mixtures. Based on the findings of this study, the utilization of WMA additives help in the reduction of viscosity values which are in return decreases mixing and compaction temperature leading to the reduction of energy costs as well as emissions. Besides, it can be concluded that all WMA mixtures performed better than HMA mixtures in the matter of rut depth.


Parviz Ghoddousi, Amir Masoud Salehi,
Volume 15, Issue 8 (12-2017)
Abstract

The fresh properties of Self Compacting Concrete (SCC) might be more susceptible to quality and quantity changes of ingredients than conventional concrete because of a combination of detailed requirements, more complex mix design, and inherent low yield stress and viscosity. In spit of the low robustness of SCC, there are a few methods available to assess the SCC robustness that the accuracy of these methods has not been fully agreed. The current study provides an index for SCC robustness based on the rheology parameters. Thus, an experimental program was undertaken to evaluate the robustness of eight selected SCCs. For doing this, water content of each SCC was changed slightly and their fresh and hardened properties were measured. The results indicated that the length of rheology parameters curve due to variation of mixing water is able to assess the SCC robustness that is comparable with combined performance based on the workability tests changes. According to this index, the robustness of SCC increases about 10% by using air-entraining admixture (AEA) and decreases considerably by reduction the paste volume (up to about 5 times). Also, the most appropriate single workability test to assess the robustness is sieve segregation test. Moreover, the scattering of compressive strength results show that there is a level of robustness in fresh state that after that the scattering of results in hardened state can be affected.

Page 1 from 1     

© 2019 All Rights Reserved | International Journal of Civil Engineering

Designed & Developed by : Yektaweb