Search published articles


Showing 31 results for Methodology

Afandizadeh Sh.,, Zoghi H. ,
Volume 1, Issue 2 (12-2003)
Abstract

Since Road transportation accounts for a large portion of total displaced passengers of Different types it is the most important mode of passenger services in Iran. The costs considered are depreciation, investment, insurance, tax, fuel, tires, main repairs, unexpected repairs, oil filter break shoe. Lubrication, batteries, commission, wages and other miscellaneous costs. These are classified into two categories of fixed and variable costs that it-ere analyzed. The data used is obtained, from the Iranian passenger transportation co- operatives based on their real costs in Fear 2002 . The methodology of determination rate of return and Passenger Transportation Price are described and these parameters are calculated. In this paper, a price model based on the economic techniques and sensitlvtfx. Analysis is presented for operators and managers. Pricing model of passenger service is prepared by the authors by the name of Development of Pricing Model of passenger Services in Intercity Roads . This research is pointing to Model Sensivity Analysis Dependent on Various Indicators.
Ayati E.,
Volume 2, Issue 2 (6-2004)
Abstract

Government agencies and the medical, insurance and automotive industries all have an interest in understanding the socio-economic costs of road crashes. These costs are estimated in most countries, and their computation methodology are continuously progressing as more refined costing methods, are used. This paper outlines two recent studies in Iran and Australia in order to compare crash cost estimation approaches. The analytical approaches and the results of similar studies in some other countries are also discussed It is shown that different approaches to estimating human costs and its components have considerable effects on the results. In both studies, the contribution to the total costs are human costs (50 to 60 percent), vehicle costs (30 percent) with the remaining 10 to 20 percent covering general costs.
Afandi Zadeh Sh., Zoghi H.,
Volume 2, Issue 2 (6-2004)
Abstract

Since Road transportation accounts for a large portion of total displaced passengers of Different types it is the most important mode of passenger services in Iran.The costs considered are depreciation, investment, insurance, tax, fuel, tires, main repairs, unexpected repairs, oil filter break shoe. Lubrication, batteries, commission, wages and other miscellaneous costs.These are classified into two categories of fixed and variable costs that it-ere analyzed. The data used is obtained, from the Iranian passenger transportation co- operatives based on their real costs in Fear 2002 .The methodology of determination rate of return and Passenger Transportation Price are described and these parameters are calculated. In this paper, a price model based on the economic techniques and sensitlvtfx. Analysis is presented for operators and managers.Pricing model of passenger service is prepared by the authors by the name of Development of Pricing Model of passenger Services in Intercity Roads . This research is pointing to Model Sensivity Analysis Dependent on Various Indicators.
Sabouri Ghomi S., Kharazi M.h.k., Asghari A., Javidan P.,
Volume 3, Issue 1 (3-2005)
Abstract

Design and construction of efficient and economic Reinforced Concrete (R.C.) Hyperbolic Cooling Towers have driven the engineers toward the design of tall and thin-shell towers which have considerable high slenderness aspect ratio. Consequently, the shell of R.C. Cooling Towers with relative high slenderness aspect ratio is extremely prone to buckling instability due to wind loading. To increase the structural stability or buckling safety factor, one economic approach is to design and construct stiffening rings for the R.C. Hyperbolic Cooling Towers. Despite the research previously performed to determine the effect of stiffening rings on the buckling behavior of the R.C. Hyperbolic Cooling Towers, information resulting in maximum buckling stability is absent considering the optimized utilization of the quantity and dimension as well as the location of this type of stiffeners. In this paper, not only the effect of the stiffening rings on the buckling stability of the R.C. Cooling Tower is studied but also the optimized location,quantity and dimension of the stiffening rings are carried out for a sample RC Cooling Tower. The dimensions of the selected sample cooling tower are in average typical dimensions which are used in the current practice. In this study, finite element (F. E.) analyses has been carried out to define the buckling modes and resistance of this tower due to wind loading for different number of stiffening ring configurations. Based on the conducted buckling analysis, the optimized number, location and dimension of the stiffening rings that maximizes the tower.s buckling stability are defined and the methodology to achieve this information is discussed in this paper.
B. Zahabiyoun,
Volume 4, Issue 1 (3-2006)
Abstract

A methodology is presented for the stochastic generation of daily rainfall which accounts for changes to the climatic inputs. The focus of the study is an example catchment in Iran. The methodology addresses the inability of GCMs to provide suitable future scenarios for the time and space scales required for a water resource impact assessment for a small catchment. One stochastic model for rainfall (Neyman-Scott Rectangular Pulses, NSRP, model) is used to generate daily rainfall sequences and then validated using historic records. For present climate conditions, the NSRP model is fitted to observed rainfall statistics. GCM outputs are then downscaled using regressions between atmospheric circulation indices (ACIs) and rainfall statistics. The relationships are then used to predict the rainfall statistics for future conditions using GCM outputs. In this respect, climate change impacts are studied and assessed in this paper. Generated rainfall scenario can then be used as inputs to a rainfall-runoff model in order to generate daily streamflow data which is not investigated here.
S.a. Sadrnejad,
Volume 4, Issue 2 (6-2006)
Abstract

An important concern in rock mechanics is non-homogeneity as joints or fault. Adopting the joints as fractures, fractures are well known for their effects on the mechanical and transport properties of rock. It has been postulated that through fractured/jointed rock, mainly, the polygons turned to the shear vector (ti) are involved in the mobilization of shear resistance. Consequently, in order to locate the contact areas implicated into the shear-test it was firstly necessary to fix the shear direction. Moreover, since laboratory observations clearly show that only the steepest polygon surfaces touch the other sample, the identification of the potential sliding areas only requires the determination of the polygons which are faced to the shear direction and which, among them, are steep enough to be involved. The methodology to be discussed here is modeling of slip on the local and global levels due to the distribution of deformation procedure of the rock joint. Upon the presented methodology, more attention has been given to slip initiation and propagation through rock joint. In particular, softening in non-linear behaviour of joint in going from the peak to residual strengths imparts a behaviour often associated with progressive failure. A multi-plane based model is developed and used to compute plastic strain distribution and failure mechanism of rock joints. Validity of the presented model was examined by comparing numerical and test results showing the behavior of both homogeneous and jointed rock samples under general stress conditions.
Sh. Afandizadeh Zargari, R. Taromi,
Volume 4, Issue 3 (9-2006)
Abstract

Optimization is an important methodology for activities in planning and design. The transportation designers are able to introduce better projects when they can save time and cost of travel for project by optimization methods. Most of the optimization problems in engineering are more complicated than they can be solved by custom optimization methods. The most common and available methods are heuristic methods. In these methods, the answer will be close to the optimum answer but it isn’t the exact one. For achieving more accuracy, more time has been spent. In fact, the accuracy of response will vary based on the time spent. In this research, using the generic algorithms, one of the most effective heuristic algorithms, a method of optimization for urban streets direction will be introduced. Therefore model of decision making in considered one way – two way streets is developed. The efficiency of model in Qazvin network is shown and the results compared whit the current situation as case study. The objective function of the research is to minimize the total travel time for all users, which is one of the most used in urban networks objectives.
N. Naderpajouh, A. Afshar, S.a. Mirmohammadsadeghi,
Volume 4, Issue 4 (12-2006)
Abstract

The use of Value Engineering (VE) methodology in construction industry has grown significantly, mainly in view of its extensive benefits. The main task in evaluation phase of VE workshop is to assess alternative ideas, proposed for each function. This phase of VE, hence, could be deemed as a Multi Criteria Decision Making (MCDM) problem. This paper presents a fuzzy decision support system (DSS) to be employed in evaluation phase of VE. The proposed multi alternative decision model may be recommended where alternatives’ preferences ratios are different, and scores assigned to each alternative idea are uncertain. As use of VE has greater payoffs at the earlier stages of the construction projects, in which most of the criteria are still vague and not precisely defined, exploiting this DSS may result in more tangible model of decision making process and satisfactory outlook of VE studies in construction projects. A ranking methodology in a spreadsheet template is also provided to facilitate the ranking process. Performance of the proposed methodology is tested using a case example in the tunneling industry.
S. Mohammadi, A. Bebamzadeh,
Volume 4, Issue 4 (12-2006)
Abstract

Explosion has always been regarded as one of the most complicated engineering problems. As a result, many engineers have preferred rather simplified empirical approaches in comparison to extremely complex deterministic analyses. In this paper, however, a numerical simulation based on the combined finite/discrete element methodology is presented for analyzing the dynamic behavior of fracturing rock masses in blasting. A finite element discretization of discrete elements allows for complex shapes of fully deformable discrete elements with geometric and material nonlinearities to be considered. Only a Rankine strain softening plasticity model is employed, which is suitable for rock and other brittle materials. Creation of new lines/edges/bodies from fracturing and fragmentation of original objects is systematically considered in the proposed gas-solid interaction flow model. An equation of state is adopted to inexpensively calculate the pressure of the detonation gas in closed form. The model employed for the flow of detonation gas has resulted in a logical algorithmic procedure for the evaluation of spatial distribution of the pressure of detonation gas, work done by the expanding gas and the total mass of the detonation gas as functions of time indicating the ability of model to respond to changes in both the mass of explosive charge and the size of the solid block undergoing fracture. Rock blasting and demolition problems are amongst the engineering applications that are expected to benefit directly from the present development. The results of this study may also be used to provide some numerical based reliable solutions for the complex analysis of structures subjected to explosive loadings.
Farnad Nasirzadeh, Abbas Afshar, Mostafa Khanzadi,
Volume 6, Issue 2 (6-2008)
Abstract

Presence of risks and uncertainties inherent in project development and implementation plays

significant role in poor project performance. Thus, there is a considerable need to have an effective risk

analysis approach in order to assess the impact of different risks on the project objectives. A powerful risk

analysis approach may consider dynamic nature of risks throughout the life cycle of the project, as well as

accounting for feedback loops affecting the overall risk impacts. This paper presents a new approach to

construction risk analysis in which these major influences are considered and quantified explicitly. The

proposed methodology is a system dynamics based approach in which different risks may efficiently be

modeled, simulated and quantified in terms of time, cost and quality by the use of the implemented object

oriented simulation methodology. To evaluate the performance of the proposed methodology it has been

employed in a bridge construction project. Due to the space limitations, the modeling and quantification

process for one of the identified risks namely “pressure to crash project duration” is explained in detail.


Sassan Eshghi, Khashaiar Pourazin,
Volume 7, Issue 1 (3-2009)
Abstract

Confined masonry buildings are used in rural and urban areas of Iran. They performed almost satisfactory

during past moderate earthquakes of Iran. There is not a methodology in Iranian Seismic Code (Standard 2800-3rd

edition) to estimate their capacities quantitatively. In line with removing this constraint, an attempt is made to study

in-plane behavior of two squared confined masonry walls with and without opening by using a numerical approach.

These walls are considered based on Iranian Seismic Code requirements. Finite element 2D models of the walls are

developed and a pushover analysis is carried out. To model the non-linear behavior of the confined masonry walls, the

following criteria are used: (1) The Rankine-Hill yield criterion with low orthotropic factor to model the masonry

panel (2) The Rankine yield criterion to model reinforced concrete bond-beams and tie-columns (3) The Coulomb

friction criterion with tension cutoff mode to model the interface zone between the masonry panel and reinforced

concrete members. For this purpose, the unknown parameters are determined by testing of masonry and concrete

samples and by finite element analysis. Comparing the results show that the initial stiffness, the maximum lateral

strength and the ductility factor of walls with and without opening are different. Also, the severe compressed zones of

the masonry panels within the confining elements are found different from what are reported for the masonry panels

of infilled frames by other researchers. This study shows that a further investigation is needed for estimating capacity

of confined masonry walls with and without opening analytically and experimentally. Also where openings, with

medium size are existed, the confining elements should be added around them. These issues can be considered in the

next revisions of Iranian Seismic Code.


F. Messaoud, M. S. Nouaouria,
Volume 8, Issue 1 (3-2010)
Abstract

This paper presents a description of the equipment, testing procedure, and methodology to obtain ground

mechanical parameters. The p-y curves for laterally loaded piles are developed. Methods for the development of p-y

curves from pressure meter and dilatometer (DMT) test are described. P-y curves are used in the analysis to represent

lateral soil-pile interaction. The pressure meter offers an almost ideal in-situ modeling tool for determining directly

the p-y curves for the design of deep foundations. As the pressure meter can be driven into the soil, the results can be

used to model a displacement pile. DMT tests were performed for comparisons with PPMT tests. Correlations were

developed between the PPMT and DMT results, indicating a consistency in soil parameters values. Comparisons

between PPMT and DMT p-y curves were developed based on the ultimate soil resistance, the slope of the initial

portion of the curves, and the shape of the curves. The initial slope shows a good agreement between PPMT and DMT

results. The predicted DMT and PPMT ultimate loads are not similar, while the predicted PPMT and DMT deflections

within the elastic range are identical.


S.a. Sadrnejad, M. Nikbakhsh Zati, M. Memarianfard,
Volume 11, Issue 1 (5-2013)
Abstract

An important concern in rock mechanics is non-homogeneity as joints or fault. This noticeable feature of failures in rock is

appearance of slip surfaces or shear bands, the characteristics of that are associated with deformation being concentrated in a

narrow zones and the surrounding material remaining intact. Adopting the joints as fractures, fractures are well known for their

effects on the mechanical and transport properties of rock. A damaged pro-elasticity multi-plane based model has been developed

and presented to predict rock behavior. In this multi-plane model, the stress–strain behavior of a material is obtained by

integrating the mechanical response of an infinite number of predefined oriented planes passing through a material point.

Essential features such as the pro-elasticity hypothesis and multi-plane model are discussed. The methodology to be discussed

here is modeling of slip on the local and global levels due to the deformation procedure of the existing/probable joints of rock and

this method has a potential of using different parameters on different sampling planes to predict inherent anisotropy of rocks.

Upon the presented methodology, more attention has been given to slip initiation and propagation through these joints. In

particular, softening in non-linear behavior of joints in going from the peak to residual strengths imparts a behavior often

associated with progressive failure. The predictions of the derived stress–strain model are compared to experimental results for

marble, sandstone, Quartz mica schist and anisotropic schist. The comparisons demonstrate the capability of this model to

reproduce accurately the mechanical behavior of rocks.


M. Davoodii, M. K. Jafari, S. M. A. Sadrolddini,
Volume 11, Issue 1 (5-2013)
Abstract

Spatial Variation of Earthquake Ground Motion (SVEGM) is clearly indicated in data recorded at dense seismographic arrays

The main purpose of this paper is to study the influence of SVEGM on the seismic response of large embankment dams. To this

end, the Masjed Soleyman embankment dam, constructed in Iran is selected as a numerical example. The spatially varying ground

motion time histories are generated using spectral representation method. According to this methodology, the generated time

histories are compatible with prescribed response spectra and reflect the wave passage and loss of coherence effects. To

investigate the sensitivity of the dam responses to the degree of incoherency, three different coherency models are used to simulate

spatially variable seismic ground motions. Finally, the seismic response of the dam under multi-support excitation is analyzed

and compared to that due to uniform ground motion. Also, the Newmark's method is used to estimate seismic-induced permanent

displacements of the embankment dam. The analysis results reveal that the dam responses can be sensitive to the assumed spatial

variation of ground motion along its base. As a general trend, it is concluded that the use of multi-support excitation, which is

more realistic assumption, results in lower acceleration and displacement responses than those due to uniform excitation.


Sh. Afandizadeh, H. Khaksar, N. Kalantari,
Volume 11, Issue 1 (3-2013)
Abstract

In this paper, a new approach was presented for bus network design which took the effects of three out of four stages of the bus planning process into account. The presented model consisted of three majors steps 1- Network Design Procedure (NDP), 2- Frequency Determination and Assignment Procedure (FDAP), and 3- Network Evaluation Procedure (NEP). Genetic Algorithm (GA) was utilized to solve this problem since it was capable of solving large and complex problems. Optimization of bus assignment at depots is another important issue in bus system planning process which was considered in the presented model. In fact, the present model was tested on Mandl’s bus network which was a benchmark in Swiss network and was initially employed by Mandl and later by Baaj, Mahmassani, Kidwai, Chakroborty and Zhao. Several comparisons indicated that the model presented in this paper was superior to the previous models. Meanwhile, none of the previous approaches optimized depots assignment. Afterwards, sensitivity analysis on GA parameters was done and calculation times were presented. Subsequently the proposed model was evaluated thus, Mashhad bus network was designed using the methodology of the presented model.
C. Torres-Machi, V. Yepes, J. Alcala, E. Pellicer,
Volume 11, Issue 2 (6-2013)
Abstract

This paper describes a methodology in designing high-performance concrete for simply supported beams, using a hybrid optimization strategy based on a variable neighborhood search threshold acceptance algorithm. Three strategies have been applied to discrete optimization of reinforced concrete beams: Variable Neighborhood Descent (VND), Reduced Neighborhood Search (RNS) and Basic Variable Neighborhood Search (BVNS). The problem includes 14 variables: two geometrical one material type one mix design and 10 variables for the reinforcement setups. The algorithms are applied to two objective functions: the economic cost and the embedded CO2 emissions. Firstly, this paper presents the application of these three different optimization strategies, which are evaluated by fitting the set of solutions obtained to a three-parameter Weibull distribution function. The Variable Neighborhood Descent with Threshold Accepting acceptance strategy algorithm (VND-TA) results as the most reliable method. Finally, the study presents a parametric study of the span length from 10 to 20 m in which it can be concluded that economic and ecological beams show a good parabolic correlation with the span length.
Y.y. Chang, C.j. Lee, W.c. Huang, W.j. Huang, M.l. Lin, W.y. Hung, Y. H. Lin,
Volume 11, Issue 2 (11-2013)
Abstract

This study presents a series of physical model tests and numerical simulations using PFC2D (both with a dip slip angle=60° and

a soil bed thickness of 0.2 m in model scale)at the acceleration conditions of 1g, 40g, and 80 g to model reverse faulting. The soil

deposits in prototype scale have thicknesses of 0.2 m, 8 m, and 16 m, respectively. This study also investigates the evolution of a

surface deformation profile and the propagation of subsurface rupture traces through overlying sand. This study proposes a

methodology for calibrating the micromechanical material parameters used in the numerical simulation based on the measured

surface settlements of the tested sand bed in the self-weight consolidation stage. The test results show that steeper surface slope

on the surface deformation profile, a wider shear band on the major faulting-induced distortion zone, and more faulting appeared

in the shallower depths in the 1-g reverse faulting model test than in the tests involving higher-g levels. The surface deformation

profile measured from the higher-g physical modeling and that calculated from numerical modeling show good agreement. The

width of the shear band obtained from the numerical simulation was slightly wider than that from the physical modeling at the

same g-levels and the position of the shear band moved an offset of 15 mm in model scale to the footwall compared with the results

of physical modeling.


M. Abbasi, A. H. Davaei Markazi,
Volume 12, Issue 1 (3-2014)
Abstract

An important factor in the design and implementation of structural control strategies is the number and placement of actuators. By employing optimally-located actuators, the effectiveness of control system increases, while with an optimal number of actuators, an acceptable level of performance can be achieved with fewer actuators. The method proposed in this paper, simultaneously determines the number and location of actuators, installed in a building, in an optimal sense. In particular, a genetic algorithm which minimizes a suitably defined structural damage index is introduced and applied to a well-known nonlinear model of a 20-story benchmark building. It is shown in the paper that an equal damage protection, compared to the work of other researchers, can be achieved with fewer numbers of optimally placed actuators. This result can be important from economic point of view. However, the attempt to minimize one performance index has negative effect on the others. To cope with this problem to some extent, the proposed genetic methodology has been modified to be applied in a multi-objective optimization problem.
M. Afzalirad, M. Kamalian, M. K. Jafari, A. Sohrabi-Bidar,
Volume 12, Issue 1 (1-2014)
Abstract

In this paper, an advanced formulation of time-domain, two-dimensional Boundary Element Method (BEM) with material damping is presented. Full space two-dimensional visco-elastodynamic time-convoluted kernels are proposed in order to incorporate proportional damping. This approach is applied to carry out site response analysis of viscoelastic topographic structures subjected to SV and P incident waves. Seismic responses of horizontally layered site, semi-circular canyons, slope topography and ridge sections subjected to these incident waves are analyzed in order to demonstrate the accuracy of the kernels and the applicability of the presented viscoelastic boundary element algorithm. The results show an excellent agreement with recent published results obtained in frequency domain. Also, the effects of different material damping ratios on site response are investigated.
H. Shahnazari, M. A. Shahin, M. A. Tutunchian,
Volume 12, Issue 1 (1-2014)
Abstract

Due to the heterogeneous nature of granular soils and the involvement of many effective parameters in the geotechnical behavior of soil-foundation systems, the accurate prediction of shallow foundation settlements on cohesionless soils is a complex engineering problem. In this study, three new evolutionary-based techniques, including evolutionary polynomial regression (EPR), classical genetic programming (GP), and gene expression programming (GEP), are utilized to obtain more accurate predictive settlement models. The models are developed using a large databank of standard penetration test (SPT)-based case histories. The values obtained from the new models are compared with those of the most precise models that have been previously proposed by researchers. The results show that the new EPR and GP-based models are able to predict the foundation settlement on cohesionless soils under the described conditions with R2 values higher than 87%. The artificial neural networks (ANNs) and genetic programming (GP)-based models obtained from the literature, have R2 values of about 85% and 83%, respectively which are higher than 80% for the GEP-based model. A subsequent comprehensive parametric study is further carried out to evaluate the sensitivity of the foundation settlement to the effective input parameters. The comparison results prove that the new EPR and GP-based models are the most accurate models. In this study, the feasibility of the EPR, GP and GEP approaches in finding solutions for highly nonlinear problems such as settlement of shallow foundations on granular soils is also clearly illustrated. The developed models are quite simple and straightforward and can be used reliably for routine design practice.

Page 1 from 2    
First
Previous
1
 

© 2019 All Rights Reserved | International Journal of Civil Engineering

Designed & Developed by : Yektaweb