Search published articles

Showing 2 results for Mechanical and Physical Properties

Sandro Machado, Mehran Karimpour-Fard, Miriam Carvalho, Orencio Villar, Atila Caldas,
Volume 12, Issue 3 (7-2014)

Municipal Solid Waste (MSW) materials are among the most complicated materials for geotechnical engineering as their composition includes an organic fraction, which suffers loss of mass over time, and a fibrous part, which acts as reinforcement, governing the MSW shear behavior. Because of these characteristics MSW can be described as a viscous material which shows time dependent behavior. Since the decomposition of MSW leads to gas and leachate generation, the changes in the MSW’s mechanical behavior could be linked to gas emission and leachate production from landfills. This paper deals with the characteristics of MSW materials to provide the necessary data for efficient and safe landfill design, construction and operation. The MSW physical characteristics such as composition, water content and organic content at varying ages, field and laboratory measurements of methane generation and leachate production, MSW compressibility behavior and its shear strength are covered. By presenting these data the authors hope to promote a better understanding of the mechanical behavior of MSW and provide useful data for use in landfill management tasks.
Özgür Çakır, Muzaffer M. Tüfekçi,
Volume 15, Issue 4 (6-2017)

An experimental program was carried out in order to investigate the usability of recycled coarse aggregate (RCA) concrete with and without ground granulated blast furnace slag (GGBFS). The RCA was derived from concrete having compressive strength of 47.6 MPa. Twelve concrete mixtures having various RCA (0-25-50-100%) and GGBFS (0-30-60%) replacement levels were designed with a water-to-binder (w/b) ratio of 0.50. Fresh concrete properties were observed through workability and slump loss. Compressive strength, tensile splitting strength, bond strength, ultrasonic pulse velocity, water absorption and density of hardened concretes were also determined at 7 and 28 days and the relations between physical properties and mechanical properties of RCA concretes with/without GGBFS were investigated. The RCA content significantly improved the tensile splitting strength of the concrete according to the compressive strength and the use of 60% GGBFS content in RCA concrete had a marginal increasing effect on the tensile splitting strength. The mixes containing 100% RCA was found to be noticeably beneficial in terms of the bond strength and the highest bond strengths were obtained with the use of 60% GGBFS content in RAC for all series at 28 days. However the lowest density and the greatest water absorption was obtained for RAC and an inverse relationship between the density and the water absorption ratio was determined.

Page 1 from 1     

© 2019 All Rights Reserved | International Journal of Civil Engineering

Designed & Developed by : Yektaweb