Search published articles


Showing 3 results for Lower-Bound

F. Askari, A. Totonchi, O. Farzaneh,
Volume 10, Issue 2 (6-2012)
Abstract

Presented is a method of three-dimensional stability analysis of convex slopes in plan view based on the Lower-bound theorem of
the limit analysis approach. The method’s aim is to determine the factor of safety of such slopes using numerical linear finite
element and lower bound limit analysis method to produce some stability charts for three dimensional (3D) homogeneous convex
slopes. Although the conventional two and three dimension limit equilibrium method (LEM) is used more often in practice for
evaluating slope stability, the accuracy of the method is often questioned due to the underlying assumptions that it makes. The
rigorous limit analysis results in this paper together with results of other researchers were found to bracket the slope stability
number to within ±10% or better and therefore can be used to benchmark for solutions from other methods. It was found that using
a two dimensional (2D) analysis to analyze a 3D problem will leads to a significant difference in the factors of safety depending
on the slope geometries. Numerical 3D results of proposed algorithm are presented in the form of some dimensionless graphs which
can be a convenient tool to be used by practicing engineers to estimate the initial stability for excavated or man-made slopes


A. R. Rahai, S. Fallah Nafari,
Volume 11, Issue 4 (12-2013)
Abstract

The seismic behavior of frame bridges is generally evaluated using nonlinear static analysis with different plasticity models hence this paper tends to focus on the effectiveness of the two most common nonlinear modeling approaches comprising of concentrated and distributed plasticity models. A three-span prestressed concrete frame bridge in Tehran, Iran, including a pair of independent parallel bridge structures was selected as the model of the study. The parallel bridges were composed of identical decks with the total length of 215 meters supported on different regular and irregular substructures with non-prismatic piers. To calibrate the analytical modeling, a large-scale experimental and analytical seismic study on a two-span reinforced concrete bridge system carried out at the University of Nevada Reno was used. The comparison of the results shows the accuracy of analytical studies. In addition, close correlation between results obtained from two nonlinear modeling methods depicts that the lumped plasticity approach can be decisively considered as the useful tool for the nonlinear modeling of non-prismatic bridge piers with hollow sections due to its simple modeling assumption and less computational time.
O. Farzaneh, F. Askari, J. Fatemi,
Volume 12, Issue 4 (12-2014)
Abstract

AWT IMAGEPresented is a method of two-dimensional analysis of the active earth pressure due to simultaneous effect of both soil weight and surcharge of strip foundation. The study’s aim is to provide a rigorous solution to the problem in the framework of upper-bound theorem of limit analysis method in order to produce some design charts for calculating the lateral active earth pressure of backfill when loaded by a strip foundation. A kinematically admissible collapse mechanism consisting of several rigid blocks with translational movement is considered in which energy dissipation takes place along planar velocity discontinuities. Comparing the lateral earth forces given by the present analysis with those of other researchers, it is shown that the results of present analysis are higher (better) than other researchers’ results. It was found that with the increase in AWT IMAGE, the proportion of the strip load (q) which is transmitted to the wall decreases. Moreover, Increasing the friction between soil and wall ( AWT IMAGE) will result in the increase of effective distance ( AWT IMAGE). Finally, these results are presented in the form of dimensionless design charts relating the mechanical characteristics of the soil, strip load conditions and active earth pressure.



Page 1 from 1     

© 2019 All Rights Reserved | International Journal of Civil Engineering

Designed & Developed by : Yektaweb