Search published articles

Showing 4 results for Localization

A.r. Khoei, S. Yadegari, M. Anahid,
Volume 4, Issue 3 (9-2006)

In this paper, a higher order continuum model is presented based on the Cosserat continuum theory in 3D numerical simulation of shear band localization. As the classical continuum models suffer from the pathological mesh-dependence in strain softening models, the governing equations are regularized by adding the rotational degrees-of-freedom to conventional degrees-of-freedom. The fundamental relations in three-dimensional Cosserat continuum are presented and the internal length parameters are introduced in the elasto-plastic constitutive matrix to control the shear bandwidth. Finally, the efficiency of proposed model and computational algorithm is demonstrated by a 3D strip in tensile. A comparison is performed between the classical and Cosserat theories and the effect of internal length parameter is demonstrated. Clearly, a finite shear bandwidth is achieved and the load-displacement curves are uniformly converged upon different mesh sizes.
S.a. Sadrnejad, M. Labibzadeh,
Volume 4, Issue 4 (12-2006)

Analysis and prediction of structural response to static or dynamic loading requires prediction of concrete response tovariable load histories. The constitutive equations for the mechanical behavior of concrete capable of seeing damage effects or crack growth procedure under loading/unloading/reloading was developed upon micro-plane framework. The proposed damage formulation has been built on the basis of five fundamental types of stress/strain combinations, which essentially may occur on any of micro-planes. Model verification under different loading/unloading/reloading stress/strain paths has been examined. The proposed model is capable of presenting pre-failure history of stress/strain progress on different predefined sampling planes through material. Many of mechanical behavior aspects happen during plasticity such as induced anisotropy, rotation of principal stress/strain axes, localization of stress/strain, and even failure mechanism are predicted upon a simple rational way and can be presented.
H. Behbahani, H. Yaghoubi, M. A. Rezvani,
Volume 10, Issue 1 (3-2012)

Magnetic levitation (maglev) is amongst the most advanced technologies that are available to the transportation industries. It

has already been noticed by decision makers in many countries around the globe. Contrary to such high levels of interest, there

are no practical algorithms available to the engineers and/or managers to assist them in analyzing economics of the maglev

systems. Therefore, it has been the purpose of this research to find appropriate answers to such vital questions and also investigate

feasibility for practical use of maglev technology in rapid transit systems. The life cycle costs (LCC) for the maglev system

including the cost of initiating such projects are included in this survey and are evaluated. To serve the purpose, an algorithm is

presented that facilitates the technical and economical analyses of maglev systems. The proposal for a long distance maglev

system, Mashhad-Tehran (M-T), is used as a case study by using the proposed algorithm. Moreover, the cost of establishing and

operating M-T project is estimated by two other different approaches. These include the already established mathematically based

cost estimating method, and the cost estimations based on the international norms and standards. These standards are based on

statistical (or provided) data. Such cost estimations assist verification of the proposed algorithm. Comparisons between outcomes

of the three methods prove close agreement for the cost estimation by all of them. It is concluded that the proposed algorithm for

implementation and operation of maglev route is practical.

M. Fadaee, M.k. Jafari, M. Kamalian, M. Moosavi, A. Shafiee,
Volume 11, Issue 2 (11-2013)

During past earthquakes, many instances of building damage as a result of earthquake surface fault rupture have been observed.

The results of investigating a potential mitigation scheme are presented in this paper. Such plan provides a wall in the soil with

the aim of surface displacement localization in the narrow pre-determined location. This may reduce the risk of the future rupture

downstream the wall. To evaluate the efficiency of the method, this paper (i) provides validation through successful class “A”

predictions of 1g model tests for fault deviation by weak wall and (ii) conducts sensitivity analyses on fault position, fault offset

and wall shear strength. It is shown that wall can be designed to deviate rupture path even downstream of the wall can be


Page 1 from 1     

© 2019 All Rights Reserved | International Journal of Civil Engineering

Designed & Developed by : Yektaweb