Search published articles

Showing 4 results for Load Capacity

A. Eslami, I. Tajvidi, M. Karimpour-Fard,
Volume 12, Issue 1 (1-2014)

Three common approaches to determine the axial pile capacity based on static analysis and in-situ tests are presented, compared and evaluated. The Unified Pile Design (UPD), American Petroleum Institute (API) and a SPT based methods were chosen to be validated. The API is a common method to estimate the axial bearing capacity of piles in marine environments, where as the others are currently used by geotechnical engineers. Seventy pile load test records performed in the northern bank of Persian Gulf with SPT profile have been compiled for methods evaluation. In all cases, pile capacities were measured using full scale static compression and/or pull out loading tests. As the loading tests in some cases were in the format of proof test without reaching the plunging or ultimate bearing capacity, for interpretation the results, offset limit load criteria was employed. Three statistical and probability based approaches in the form of a systematic ranking, called Rank Index, RI, were utilized to evaluate the performance of predictive methods. Wasted Capacity Index (WCI) concept was also applied to validate the efficiency of current methods. The evaluations revealed that among these three predictive methods, the UPD is more accurate and cost effective than the others.
A. Ahmed A, S. Naganathan, K. Nasharuddin, M.m. Fayyadh,
Volume 13, Issue 2 (6-2015)

The effect of steel plate thickness on the repair effectiveness of RC beam is presented in this paper. A total of four beams were tested, one beam repaired by CFRP with a thickness of 1.2 mm and used as a control beam, and three beams repaired by a steel plate. Steel plates with a thickness of 2 mm, 3 mm, and 4 mm were used in repairing the beams. The maximum load-carrying capacity, deflection at mid span and edge of the opening, strain in steel bars, strain in externally bonded plates, crack patterns, and failure modes were observed on each beam. The externally bonded CFRP sheet and steel plates were found to be effective in the repairing of RC beams with large rectangular web opening. The results show that increasing steel plate thickness has little effect on the maximum load capacity. The CFRP plate is more effective than steel plate in increasing the load capacity of beams.
A.r. Sattarifar, M.k. Sharbatdar, A. Dalvand,
Volume 13, Issue 4 (12-2015)

In this paper, an experimental study has been conducted on strengthening of reinforced concrete (RC) connections by FRP sheets. The innovation of this research is using narrow grooves on critical regions of connection to increase the adherence of FRP sheets and prevent their early debonding. Therefore, four RC connections were made and tested under a constant axial load on the column and an increasing cyclic load on the beam. The first specimen, as the standard reference specimen, had close tie spacing in ductile regions of beam, column and panel zone based on seismic design provisions, and the second specimen, as the weak reference specimen did not have these conditions in all regions. Two other weak specimens were strengthened using two different strengthening patterns with FRP sheets one by ordinary surface preparation and the other with surface grooving method for installing FRP sheets on the connection. The results showed that ultimate load and ductility of the weak specimen compared to standard specimen decreased 25% and 17%, respectively. The shear failure and concrete crushing were prevented in the ductile regions of the beam and panel zone in both strengthened specimens. Also, it was observed that early debonding of FRP sheets was prevented in the strengthened connection with grooving pattern and so had desirable ductility and bearing capacity similar to the standard specimen.

Guray Arslan, Muzaffer Borekci, Muzaffer Balci, Melih Hacisalihoglu,
Volume 14, Issue 3 (4-2016)

The contribution of concrete to inelastic deformation capacity and shear strength of reinforced concrete (RC) columns failing in shear has been investigated extensively by various researchers. Although RC members are designed to have shear strengths much greater than their flexural strengths to ensure flexural failure according to the current codes, shear degradation of RC columns failing in flexure has not been studied widely. The aim of this study is to investigate the shear degradation of RC columns using finite element analyses (FEA). The results of FEA are compared with the results of experimental studies selected from literature, and it is observed that the lateral load-deflection curves of analysed columns are compatible with the experimental results. Twenty-six RC columns were analysed under monotonically increasing loads to determine the concrete contribution to shear strength. The results of analyses indicate that increasing the ratio of shear to flexural strength reduces the concrete contribution to shear strength of the columns.

Page 1 from 1     

© 2019 All Rights Reserved | International Journal of Civil Engineering

Designed & Developed by : Yektaweb