Search published articles


Showing 2 results for Horizontal Curve

R. A. Memon, G. B. Khaskheli, M. H. Dahani,
Volume 10, Issue 1 (3-2012)
Abstract

Present study is an extension of earlier work carried out on two-lane two way roads in the two provinces of Pakistan i.e. N-25,

N-55 and N-5 regarding the measure of operating speed and development of operating speed prediction models. Curved sections

of two-lane rural highways are the main location of run-off road accidents. In addition to that the road alignment having

combination of geometric elements may be more harmful to the drivers than the successive features with adequate separation.

This study is carried out on two-lane two- way road along N-65 (from Sibi to Quetta). Three sections are selected for study with

thirty three horizontal curves. Continuous speed profile data was recorded with the help of VBox (GPS based device) which was

attached with a vehicle to detect vehicle position through satellite signals. VBox is new equipment with modern technology in this

field and it helps in recording continuous speed profile and saving of this information on the computer as a permanent record.

Through the regression analysis, models were developed for estimation of operating speed on horizontal curves and on tangent,

and estimation of maximum speed reduction from tangent to curve. The validation of developed model shows compatibility with

the experimental data.


S. F. Eftekharzadeh, A. Khodabakhshi,
Volume 12, Issue 3 (9-2014)
Abstract

The previous studies show that a high percentage of traffic accidents take place in two-lane rural highways and most of which happen at horizontal curves. Meanwhile the horizontal alignment is often subject to hard topographic conditions where because of economic aspects designers are forced to design horizontal curves at grades. Vertical angle of longitudinal slope reduces the normal force of vehicle on road and friction force in tire-pavement surface will decrease. This leads to a lack of sufficient driver control over the vehicle especially if the curve with small radius is located at downgrade. In this paper, the suitability of operating speed and lateral friction coefficient as geometric design criteria for horizontal curves in downgrades are studied with regard to traffic safety and vehicle stability. The investigation of speed reduction of the vehicles running on a horizontal curve at downgrade as a response of driver behavior and the use of friction ellipse theory give the available friction coefficient. Whereas the dynamic analysis of forces applied on the vehicle in curve which is located at downgrade if combined with operating speed results in the required coefficient of lateral friction. Finally, a comparison of these two parameters based on safety evaluation criteria gives an estimation of actual safety level in designing horizontal curve at downgrades with regard to AASHTO’s data in horizontal curve design.

Page 1 from 1     

© 2019 All Rights Reserved | International Journal of Civil Engineering

Designed & Developed by : Yektaweb