Search published articles

Showing 3 results for Genetic Programming

E. Kermani, Y. Jafarian, M. H. Baziar,
Volume 7, Issue 4 (12-2009)

Although there is enough knowledge indicating on the influence of frequency content of input motion on the deformation demand of structures, state-of-the-practice seismic studies use the intensity measures such as peak ground acceleration (PGA) which are not frequency dependent. The v max/a max ratio of strong ground motions can be used in seismic hazard studies as the representative of frequency content of the motions. This ratio can be indirectly estimated by the attenuation models of PGA and PGV which are functions of earthquake magnitude, source to site distance, faulting mechanism, and local site conditions. This paper presents new predictive equations for v max/a max ratio based on genetic programming (GP) approach. The predictive equations are established using a reliable database released by Pacific Earthquake Engineering Research Center (PEER) for three types of faulting mechanisms including strikeslip, normal and reverse. The proposed models provide reasonable accuracy to estimate the frequency content of site ground motions in practical projects. The results of parametric study demonstrate that v max/a max increases through increasing earthquake moment magnitude and source to site distance while it decreases with increasing the average shear-wave velocity over the top 30m of the site.
M. H. Baziar, A. Saeedi Azizkandi,
Volume 11, Issue 2 (11-2013)

Due to its critical impact and significant destructive nature during and after seismic events, soil liquefaction and liquefactioninduced

lateral ground spreading have been increasingly important topics in the geotechnical earthquake engineering field

during the past four decades. The aim of this research is to develop an empirical model for the assessment of liquefaction-induced

lateral ground spreading. This study includes three main stages: compilation of liquefaction-induced lateral ground spreading

data from available earthquake case histories (the total number of 525 data points), detecting importance level of seismological,

topographical and geotechnical parameters for the resulted deformations, and proposing an empirical relation to predict

horizontal ground displacement in both ground slope and free face conditions. The statistical parameters and parametric study

presented for this model indicate the superiority of the current relation over the already introduced relations and its applicability

for engineers.

H. Shahnazari, M. A. Shahin, M. A. Tutunchian,
Volume 12, Issue 1 (1-2014)

Due to the heterogeneous nature of granular soils and the involvement of many effective parameters in the geotechnical behavior of soil-foundation systems, the accurate prediction of shallow foundation settlements on cohesionless soils is a complex engineering problem. In this study, three new evolutionary-based techniques, including evolutionary polynomial regression (EPR), classical genetic programming (GP), and gene expression programming (GEP), are utilized to obtain more accurate predictive settlement models. The models are developed using a large databank of standard penetration test (SPT)-based case histories. The values obtained from the new models are compared with those of the most precise models that have been previously proposed by researchers. The results show that the new EPR and GP-based models are able to predict the foundation settlement on cohesionless soils under the described conditions with R2 values higher than 87%. The artificial neural networks (ANNs) and genetic programming (GP)-based models obtained from the literature, have R2 values of about 85% and 83%, respectively which are higher than 80% for the GEP-based model. A subsequent comprehensive parametric study is further carried out to evaluate the sensitivity of the foundation settlement to the effective input parameters. The comparison results prove that the new EPR and GP-based models are the most accurate models. In this study, the feasibility of the EPR, GP and GEP approaches in finding solutions for highly nonlinear problems such as settlement of shallow foundations on granular soils is also clearly illustrated. The developed models are quite simple and straightforward and can be used reliably for routine design practice.

Page 1 from 1     

© 2019 All Rights Reserved | International Journal of Civil Engineering

Designed & Developed by : Yektaweb