Search published articles


Showing 13 results for Gis

M.h. Sebt, E. Parvaresh Karan, M.r. Delavar,
Volume 6, Issue 4 (12-2008)
Abstract

Geographic information systems (GIS) are one of the fastest growing computer-based technologies of past two decades, yet, full potential of this technology in construction has not been realized. Based upon GIS capabilities, construction site layout is one of the areas that GIS could be applied. The layout of temporary facilities (TFs) such as warehouses, fabrication shops, maintenance shops, concrete batch plants, construction equipments, and residence facilities has an important impact on the cost savings and efficiency of construction operations, especially for large projects. The primary objectives of this paper are to describe GIS technology and to present application of GIS technology to construction site layout. The study also delineated the methods of location TFs in construction site. An example application of GIS to location optimization of tower crane and concrete batch plant is provided to demonstrate GIS capabilities as compared with previous models. The spatial and nonspatial data which used in construction site layout process are analyzed and arranged on GIS environment and results showed the GIS can solve site layout problem. Finally, areas of additional research are noted.
M.h. Vahidnia, A.a. Alesheikh, A. Alimohammadi, F. Hosseinali,
Volume 7, Issue 3 (9-2009)
Abstract

Landslides are major natural hazards which not only result in the loss of human life but also cause economic burden on the society. Therefore, it is essential to develop suitable models to evaluate the susceptibility of slope failures and their zonations. This paper scientifically assesses various methods of landslide susceptibility zonation in GIS environment. A comparative study of Weights of Evidence (WOE), Analytical Hierarchy Process (AHP), Artificial Neural Network (ANN), and Generalized Linear Regression (GLR) procedures for landslide susceptibility zonation is presented. Controlling factors such as lithology, landuse, slope angle, slope aspect, curvature, distance to fault, and distance to drainage were considered as explanatory variables. Data of 151 sample points of observed landslides in Mazandaran Province, Iran, were used to train and test the approaches. Small scale maps (1:1,000,000) were used in this study. The estimated accuracy ranges from 80 to 88 percent. It is then inferred that the application of WOE in rating maps’ categories and ANN to weight effective factors result in the maximum accuracy.
M.e. Poorazizi, A.a. Alesheikh,
Volume 9, Issue 1 (3-2011)
Abstract

Air pollution is a serious challenge in densely populated cities. It poses a significant threat to human health, property and the environment throughout the developed and developing parts of the world. Real-time air quality monitoring and public access to related information are the key components of a successful environmental management. Mashups can be customized to adequately address the monitoring of such geographically oriented challenges. The growth of mashups has been accelerated by Web 2.0 technologies. The integration of Web 2.0 and GIS (Geographic Information System) has been highlighted by the second generation of Internet-based services that emphasizes on online information collaboration and sharing among users. The main objective of this paper is to assess, design and develop a Web 2.0 thin client application called Tehran Air Quality Reporter. The application uses Google Maps API (Application Programming Interface), Web GIServices (Geographic Information Services), and AJAX (Asynchronous JavaScript and XML) to disseminate real-time air quality information through internet. Such information can improve the decisions of the pertinent environmental organizations as well as urban settlers. The software also utilized DOM (Document Object Model) and JavaScript functionalities for handling the response events and providing flexibility and more interactivity. The developed Geo Mashup includes geospatial maps and features, standard business charts, node and link displays, as well as custom visual displays. All visualization components run in any web browsers and provide a user friendly environment.
I. Yitmen,
Volume 10, Issue 4 (12-2012)
Abstract

Learning rapidly and competently has become a pre-eminent strategy for improving organizational performance in the

new knowledge era. Improving dynamic learning capability is an exclusive strategy for corporate success in construction

industry. Thus engineering design firms should implement OL to accomplish a state of readiness for change and develop a

competence to respond and identify future business potentials. This study aims to analyze the relationship between

organizational learning (OL) and performance improvement (PI) in civil engineering design firms of Turkish construction

industry. OL structure in engineering design firms incorporates five constructs: organizational environment, strategy

development and implementation, supportive leadership, leveraging knowledge, and learning capability. The empirical data

was collected through a questionnaire survey conducted to engineering design firms registered to the Turkish Chamber of Civil

Engineers. The hypothesized model relationships were tested using Structural Equation Modeling (SEM). The results show that

each of the variables has a different role and significant positive impact on the OL process and organizational PI. The variables

“Supportive leadership” and “Learning capability” proved to be strongly significant and positively related to organizational

performance in engineering design firms. In engineering design firms, supportive leadership is needed in order to establish a

participative cultural environment that helps design a new form of organization which emphasizes learning, flexibility, and

rapid response. Learning capability is the potential to explore and exploit knowledge through learning flows that make possible

the development, evolution and use of knowledge stocks enacting engineering design firms and their members to add value to

the design business.


M. Heidarzadeh, A.a. Mirghasemi, S. M. Sadr Lahijani, F. Eslamian,
Volume 11, Issue 1 (5-2013)
Abstract

In a rare engineering experience throughout the world, we successfully stabilized relatively coarse materials of drain using

cement grouting. The grouting work was performed at the Karkheh earth dam, southwest Iran, and was part of the efforts to

extend the dam’s cut-off wall. Since the dam was completed, the execution of the new cut-off wall from the dam crest was

inevitable. Hence, one of the main difficulties associated with the development of the new cut-off wall was trenching and execution

of plastic-concrete wall through the relatively coarse materials of drain in the dam body. Due to high permeability of drain, the

work was associated with the possible risk of excessive slurry loss which could result in the collapse of the trench. In order to

achieve an appropriate grouting plan and to determine the mix ratio for the grouting material, a full-scale test platform consisting

of actual drain materials was constructed and underwent various tests. Results of the testing program revealed that a grouting

plan with at least 2 grouting rows and a Water/Cement mix ratio of 1/ (1.5-2) can successfully stabilize the drain materials. After

finalizing the technical characteristics of the grouting work, the method was applied on the drain materials of the Karkheh dam

body. The results were satisfactory and the drain materials were stabilized successfully so that the cut-off wall was executed

without any technical problem.


Y.y. Chang, C.j. Lee, W.c. Huang, W.j. Huang, M.l. Lin, W.y. Hung, Y. H. Lin,
Volume 11, Issue 2 (11-2013)
Abstract

This study presents a series of physical model tests and numerical simulations using PFC2D (both with a dip slip angle=60° and

a soil bed thickness of 0.2 m in model scale)at the acceleration conditions of 1g, 40g, and 80 g to model reverse faulting. The soil

deposits in prototype scale have thicknesses of 0.2 m, 8 m, and 16 m, respectively. This study also investigates the evolution of a

surface deformation profile and the propagation of subsurface rupture traces through overlying sand. This study proposes a

methodology for calibrating the micromechanical material parameters used in the numerical simulation based on the measured

surface settlements of the tested sand bed in the self-weight consolidation stage. The test results show that steeper surface slope

on the surface deformation profile, a wider shear band on the major faulting-induced distortion zone, and more faulting appeared

in the shallower depths in the 1-g reverse faulting model test than in the tests involving higher-g levels. The surface deformation

profile measured from the higher-g physical modeling and that calculated from numerical modeling show good agreement. The

width of the shear band obtained from the numerical simulation was slightly wider than that from the physical modeling at the

same g-levels and the position of the shear band moved an offset of 15 mm in model scale to the footwall compared with the results

of physical modeling.


K. J. Tu, Y. W. Huang,
Volume 11, Issue 4 (12-2013)
Abstract

The decisions made in the planning phase of a building project greatly affect its future operation and maintenance (O&M) cost. Recognizing the O&M cost of condominiums’ common facilities as a critical issue for home owners, this research aims to develop an artificial neural network (ANN) O&M cost prediction model to assist developers and architects in effectively assessing the impacts of their decisions made in the planning phase of condominium projects on future O&M costs. A regression cost prediction model was also developed as a benchmark model for testing the predictive accuracy of the ANN model. Six critical building design attributes (building age, number of apartment units, number of floors, average sale price, total floor area, and common facility floor area) which are usually available in the project planning phase, were identified as the input factors to both models and average monthly O&M cost as the output factor. 55 of the 65 existing condominium properties randomly selected were treated as the training samples whose data were used to develop the ANN and regression models the other ten as the test samples to compare and verify the predictive performance of both models. The study results revealed that the ANN model delivers more accurate and reliable cost prediction results, with lower average absolute error around 7.2% and maximum absolute error around 16.7%, as compared with the regression model. This study shows that ANN is an effective method in predicting building O&M costs in the project planning phase. Keywords: Project management, Facility management, Common facilities, Cost modeling.
M. Khorami, J. Sobhani,
Volume 11, Issue 4 (12-2013)
Abstract

Worldwide, asbestos fibers utilized in fiber cement boards, have been recognized as harmful materials regarding the public health and environmental pollutions. These concerns motivate the researchers to find the appropriate alternatives to substitute the asbestos material towards the sustainability policies. In this paper, the applicability of asbestos replacement with three types of agricultural waste fibers, including bagasse, wheat and eucalyptus fibers were experimentally investigated. To this end, the flexural behaviour and microstructure of cement composite boards made by addition of 2 % and 4 % of waste agricultural fibers in combination with and without 5 % replacement of silica fume by mass of cement were evaluated. The results of this study attested the applicability of utilized waste agricultural fibers in production of cement composite boards by improving the flexural and energy absorption characteristics, more or less, depending on the type of fibers. Moreover, it is found that application of silica fume in production of cement composite boards led to an increase in flexural strength.
S. Soudmand, M. Ghatee, S. M. Hashemi,
Volume 11, Issue 4 (12-2013)
Abstract

This paper proposes a new hybrid method namely SA-IP including simulated annealing and interior point algorithms to find the optimal toll prices based on level of service (LOS) in order to maximize the mobility in urban network. By considering six fuzzy LOS for flows, the tolls of congested links can be derived by a bi-level fuzzy programming problem. The objective function of the upper level problem is to minimize the difference between current LOS and desired LOS of links. In this level, to find optimal toll, a simulated annealing algorithm is used. The lower level problem is a fuzzy flow estimator model with fuzzy link costs. Applying a famous defuzzification function, a real-valued multi-commodity flow problem can be obtained. Then a polynomial time interior point algorithm is proposed to find the optimal solution regarding to the estimated flows. In pricing process, by imposing cost on some links with LOS F or E, users incline to use other links with better LOS and less cost. During the iteration of SA algorithm, the LOS of a lot of links gradually closes to their desired values and so the algorithm decreases the number of links with LOS worse than desirable LOS. Sioux Falls network is considered to illustrate the performance of SA-IP method on congestion pricing based on different LOS. In this pilot, after toll pricing, the number of links with LOS D, E and F are reduced and LOS of a great number of links becomes C. Also the value of objective function improves 65.97% after toll pricing process. It is shown optimal toll for considerable network is 5 dollar and by imposing higher toll, objective function will be worse.
M. Effati, M. A. Rajabi, F. Samadzadegan, Sh. Shabani,
Volume 12, Issue 3 (9-2014)
Abstract

Road transportation by way of automobiles is a very convenient means of transportation. Today, the most detrimental consequence of developing transportation systems in a country is traffic accident that places a huge financial burden on society. This paper investigates the role of information systems in transportation safety that leads to improved planning and operation of the transportation system through the application of new technologies. Current methods for identification of segments of roads with high potential of accident are based on statistical approaches. Since there are not accident records for newly built roads, these methods cannot be used for regional roads that are recently built. This paper presents a GIS based Neuro-Fuzzy modeling for identification of road hazardous zones. The results of proposed approach are compared with statistical methods. It is shown that this method is a cheaper but at the same time robust means of analyzing the level of hazard associated with each road segment under consideration, specially when data are uncertain and incomplete.
Alemdar Bayraktar, Ahmet Can Altunişik, Temel Türker,
Volume 14, Issue 1 (1-2016)
Abstract

This paper addresses the ambient vibration based finite element model updating of long span reinforced concrete highway bridges. The procedure includes ambient vibration tests under operational conditions, finite element modeling using special software and finite element model updating using some uncertain parameters. Birecik Highway Bridge located on the 81stkm of Şanlıurfa-Gaziantep state highway over Fırat River in Turkey is selected as a case study. Because of the fact that the bridge is the sole in this part of Fırat, it has a major logistical importance. The structural carrier system of the bridge consists of two main parts: Arch and Beam Compartments. In this part of the paper, the beam compartment is investigated. Three dimensional finite element model of the beam compartment of the bridge is constituted using SAP2000 software to determine the dynamic characteristics analytically. Operational Modal Analysis method is used to extract dynamic characteristics of the beam compartment by using Enhanced Frequency Domain Decomposition method. Analytically and experimentally identified dynamic characteristic are compared with each other and finite element model of the beam compartment of the bridge is updated by changing of some uncertain parameters such as section properties, damages, boundary conditions and material properties to reduce the differences between the results. It is demonstrated that the ambient vibration measurements are enough to identify the most significant modes of long span highway bridges. Maximum differences between the natural frequencies are reduced averagely from %46.7 to %2.39 by model updating. Also, a good harmony is found between mode shapes after finite element model updating.


Artur Duchaczek, Zbigniew Mańko,
Volume 15, Issue 4 (6-2017)
Abstract

The paper is presented an attempt to assess service life of steel girders in military bridges (or by-pass temporary bridges) when fatigue cracks are detected in them. A function describing the geometry of fatigue cracks, the so-called crack shape factor Y, for two different, assumed calculated models, was presented. The function was used to plot sample graphs allowing assessing the remaining service life of such structural elements or engineering structures in a simple way. This method of analyzing can be used not only for the military bridges but also for other steel structures with existing cracks. The work is also presented assessments of possible applications of two FEM calculated models using shell elements to test stress and deformation at the top part of a fatigue crack located in a web of a steel girder used in the military bridges. The results of the conducted numerical analyses were compared with the results obtained in experimental research conducted in laboratory conditions using extensometers.


Ahmad Soltanzadeh, Iraj Mohammadfam, Abbas Moghim Beygi, Reza Ghiasvand,
Volume 15, Issue 7 (10-2017)
Abstract

Construction industries are the most dangerous worksites with high risk of occupational accident and bodily injuries, which ranges from mild to very severe cases. The aim of this study was to explore the causal factors of accident severity rate (ASR), in 13 of the biggest Iranian construction industries. In this analytical cross-sectional study, the data of registered accidents from 2009 until 2013 were obtained from an official database. Data of HSE risk management systems and HSE training were also gathered from comprehensive accident investigation reports. Data analysis and regression modeling were done using SPSS statistical software (version 22). The mean and SD of ASR of studied construction worksites was 257.52±1098.95. The results show that the system associated with HSE and HSE risk management established only 41.8 and 18.4%, respectively. The results of multiple linear regression indicated that some individual and organizational factors (IOFs), HSE training factors (HTFs), and Risk Management System factors (RMSFs) were significantly associated with ASR (p<0.05). The study revealed the causal factors of ASR. Hence, these findings can be applied in the design and implementation of a comprehensive HSE risk management system to reduce ASR.



Page 1 from 1     

© 2019 All Rights Reserved | International Journal of Civil Engineering

Designed & Developed by : Yektaweb