Search published articles

Showing 12 results for Finite Element Modeling

Khalou A.r., Ghara Chour Lou A.,
Volume 3, Issue 1 (3-2005)

This paper presents the results of analytical studies concerning the flexuralstrengthening of reinforced concrete beams by external bonding of high-strength lightweightcarbon fiber reinforced plastic (CFRP) plates to tension face of the beam. Three groups of beamswere tested analytically and compared with existing experimental results. Results of the numericalanalyses showed that, although addition of CFRP plates to the tension face of the beam increasesthe strength, it decreases the beam ductility. Finite element modeling of fifteen different beams in aparametric study indicates that steel area ratio, CFRP thickness, CFRP ultimate strength andelastic modulus considerably influence the level of strengthening and ductility.
M.a. Goudarzi, S.r. Sabbagh-Yazdi,
Volume 7, Issue 3 (9-2009)

The main objective of this article is evaluation of the simplified models which have been developed for analysis and design of liquid storage tanks. The empirical formulas of these models for predicting Maximum Sloshing Wave Height (MSWH) are obtained from Mass Spring Models (MSM). A Finite Element Modeling (FEM) tool is used for investigating the behavior the some selected liquid storage tanks under available earthquake excitations. First, the results of FEM tool are verified by analyzing a liquid storage tank for which theoretical solution and experimental measurements are readily available. Then, numerical investigations are performed on three vertical, cylindrical tanks with different ratios of Height to Radius (H/R=2.6, 1.0 and 0.3). The behaviors of the tanks are initially evaluated using modal under some available earthquake excitations with various vibration frequency characteristics. The FEM results of modal analysis, in terms of natural periods of sloshing and impulsive modes period, are compared with those obtained from the simplified MSM formulas. Using the time history of utilized earthquake excitations, the results of response-history FEM analysis (including base shear force, global overturning moment and maximum wave height) are compared with those calculated using simplified MSM formulations. For most of the cases, the MSWH results computed from the time history FEM analysis demonstrate good agreements with the simplified MSM. However, the simplified MSM doesn’t always provide accurate results for conventionally constructed tanks. In some cases, up to 30%, 35% and 70% average differences between the results of FEM and corresponding MSM are calculated for the base shear force, overturning moment and MSWH, respectively.
A.r. Khaloo, I. Eshghi, P. Piran Aghl,
Volume 8, Issue 3 (9-2010)

In this paper the response of cantilevered reinforced concrete (RC) beams with smart rebars under static lateral loading has been numerically studied, using Finite Element Method. The material used in this study is SuperelasticShape Memory Alloys (SE SMAs) which contains nickel and titanium elements. The SE SMA is a unique alloy that has the ability to undergo large deformations and return to their undeformed shape by removal of stresses. In this study, different quantities of steel and smart rebars have been used for reinforcement andthe behavior of these models under lateral loading, including their load-displacement curves, residual displacements, and stiffness, were discussed. During lateral loading, rebars yield or concrete crushes in compression zone in some parts of the beams and also residual deflections are created in the structure. It is found that by using SMA rebars in RC beams, these materials tend to return to the previous state (zero strain), so they reduce the permanent deformations and also in turn create forces known as recovery forces in the structure which lead into closing of concrete cracks in tensile zone. This ability makes special structures to maintain their serviceability even after a strong earthquake

A. A. Tasnimi, M. A. Rezazadeh,
Volume 10, Issue 3 (9-2012)

The torsional capacity of unreinforced masonry brick buildings is generally inadequate to provide a stable seismic behavior. The

torsional strength is believed to be the most important parameter in earthquake resistance of masonry buildings and the shear

stresses induced in the bed joints of such building’s walls is an important key for design purposes. Brick buildings strengthened

with wire-mesh reinforced concrete overlay are used extensively for building rehabilitation in Iran. Their quick and simple

applications as well as good appearance are the main reasons for the widespread use of such strengthening technique. However,

little attention has been paid to torsional strengthening in terms of both experimental and numerical approach. This paper reports

the response and behavior of two single-story brick masonry buildings having a rigid two-way RC floor diaphragm. Both

specimens were tested under monotonic torsional moment.Numerical work was carried out using non-linear finite element

modeling. Good agreement in terms of torque–twist behavior, and crack patterns was achieved. The unique failure modes of the

specimens were modeled correctly as well. The results demonstrate the effectiveness of reinforced concrete overlay in enhancing

the torsional response of strengthened building. Having evaluated the verification of modeling, an unreinforced brick building

with wall-to-wall vulnerable connections was modeled so that the effect of these connections on torsional performance of brick

building could be studied. Then this building was strengthened with reinforced concrete overlay and the effect of strengthening

on torsional performance of brick buildings with vulnerable connections was predicted numerically.

Seyed B. Beheshti-Aval,
Volume 10, Issue 4 (12-2012)

A comparison between design codes i.e. ACI and AISC-LRFD in evaluation of flexural strength of concrete filled steel tubular

columns (CFTs) is examined. For this purpose an analytical study on the response of CFTs under axial-flexural loading is carried

using three-dimensional finite elements with elasto-plastic model for concrete with cracking and crushing capability and elastoplastic

kinematic hardening model for steel. The accuracy of the model is verified against previous test results. The nonlinear

modeling of CFT columns shows that the minimum thickness that recommended by ACI and AISC-LRFD to prevent local buckling

before the steel shell yielding for CFT columns could be decreased. The comparison of analytical results and codes indicates that

the accuracy of ACI method in estimation of axial-flexural strength of CFT columns is more appropriate than AISC-LRFD. The

ACI lateral strength of CFTs is located on upper bond of the AISC-LRFD’s provisions. AISC-LRFD estimates the lateral strength

conservatively but ACI in some ranges such as in short columns or under high axial load levels computes lateral strength in nonconservative

manner. Supplementary provisions for post local buckling strength of CFT columns should be incorporated in high

seismic region. This effect would be pronounced for column with high aspect ratio and short columns.

M. B. Esfandiari Sowmehsaraei, R. Jamshidi Chenari,
Volume 12, Issue 1 (1-2014)

Soil reinforced with fiber shows characteristics of a composite material, in which fiber inclusion has a significant effect on soil permeability. Concerning to the higher void ratio of carpet fibers, at first stages it may be expected that an increase in fiber content of the reinforced soil would result in an increase in permeability of the mixture. However, the present article demonstrates that fiber inclusion will decrease the permeability of sand-fiber composite.A series of constant head permeability tests have been carried out to show the effects and consequently, a new system of phase relationships was introduced to calculate the dry mass for the sand portion of the composite. Monte Carlo simulation technique adopted with finite element theory was employed to back calculate the hydraulic conductivity of individual porous fibers from the laboratory test results. It was observed that the permeability coefficient of the porous fibers are orders of magnitude less than the skeletal sand portion due to the fine sand particle entrapment and also the fiber volume change characteristics.
E. Lotfi, S. Delfan, A. Hamidi, H. Shahir, Gh. Fardi,
Volume 12, Issue 1 (1-2014)

In saturated soils, heating induces thermal expansion of both grains and the pore fluid. Lower thermal expansion coefficient of aggregates results in the increase of pore pressure and reduction of the effective stress besides subsequent volume changes due to the dissipation of pore pressure and heat transfer. Dissipation of thermally induced pore pressure with time is a coupled thermo-hydro-mechanical (THM) phenomenon, involving gradients of pore pressure and temperature, hydraulic and thermal flows within the mass of soil and changes in the mechanical properties with temperature. The objective of this paper is presentation of a numerical method to determine the effect of temperature on consolidation of clays. In this regard, the finite element code, PISA is used for one dimensional THM analysis of porous media. The analysis performed using both linear elastic and elastoplastic Cam clay models. Modified Cam clay model was applied in elastoplastic analysis. Variation of temperature, displacements and pore pressure determined with time and compared with numerical solutions of other researchers. Also it was indicated that implementation of coupled THM analysis yields better results for displacements compared to the hydro mechanical (HM) one. Application of elastoplastic constitutive model instead of linear elastic one indicated that preconsolidation pressure has an important effect on results of analysis.
A. Shojaei, H. Tajmir Riahi, M. Hirmand,
Volume 13, Issue 1 (3-2015)

Incremental launching is a widespread bridge erection technique which may offer many advantages for bridge designers. Since internal forces of deck vary perpetually during construction stages, simulation and modeling of the bridge behavior, for each step of launching, are tedious and time consuming tasks. The problem becomes much more complicated in construction progression. Considering other load cases such as support settlements or temperature effects makes the problem more intricate. Therefore, modeling of construction stages entails a reliable, simple, economical and fast algorithmic solution. In this paper, a new Finite Element (FE) model for study on static behavior of bridges during launching is presented. Also a simple method is introduced to normalize all quantities in the problem. The new FE model eliminates many limitations of some previous models. To exemplify, the present model is capable to simulate all the stages of launching, yet some conventional models of launching are insufficient for them. The problem roots from the main assumptions considered to develop these models. Nevertheless, by using the results of the present FE model, some solutions are presented to improve accuracy of the conventional models for the initial stages. It is shown that first span of the bridge plays a very important role for initial stages it was eliminated in most researches. Also a new simple model is developed named as "semi infinite beam" model. By using the developed model with a simple optimization approach, some optimal values for launching nose specifications are obtained. The study may be suitable for practical usages and also useful for optimizing the nose-deck system of incrementally launched bridges.
A. Fooladi, Mo.r. Banan,
Volume 13, Issue 2 (6-2015)

Latticed columns are frequently used in industrial steel structures. In some countries these built-up columns might be even used in other types of steel structures such as residential and commercial buildings. Besides, latticed columns are parts of skeletons of many historic buildings all around the world. To analyze a steel structure with latticed columns a more accurate numerical model for such a column seems to be essential. The lay-out and connectivity of constructing main profiles of a latticed column leads to formation of many shear zones along the length of a column. Therefore, considering shear effects on the behavior of a lattice column is inevitable. This paper proposed a new super-element with twelve degrees of freedom to be used in finite element modeling of latticed columns. The cross sectional area, moments of inertia, shear coefficient and torsional rigidity of the developed new element are derived. To compute these parameters with less complexity a model using only beam elements is also introduced. A general purpose finite element program named LaCE is developed. This FE program is capable of performing linear and nonlinear analysis of 3D-frames with latticed columns, considering shear deformation. To show the accuracy of the proposed element, several cases are studied. The outcome of these investigations revealed that the current-in-practice model for latticed columns suffers from some major shortcomings which to some extends are resolved by the proposed super-element. The developed element showed the capability of modeling a lattice column with good accuracy and less computational cost.
Alemdar Bayraktar, Ahmet Can Altunişik, Temel Türker,
Volume 14, Issue 1 (1-2016)

This paper addresses the ambient vibration based finite element model updating of long span reinforced concrete highway bridges. The procedure includes ambient vibration tests under operational conditions, finite element modeling using special software and finite element model updating using some uncertain parameters. Birecik Highway Bridge located on the 81stkm of Şanlıurfa-Gaziantep state highway over Fırat River in Turkey is selected as a case study. Because of the fact that the bridge is the sole in this part of Fırat, it has a major logistical importance. The structural carrier system of the bridge consists of two main parts: Arch and Beam Compartments. In this part of the paper, the beam compartment is investigated. Three dimensional finite element model of the beam compartment of the bridge is constituted using SAP2000 software to determine the dynamic characteristics analytically. Operational Modal Analysis method is used to extract dynamic characteristics of the beam compartment by using Enhanced Frequency Domain Decomposition method. Analytically and experimentally identified dynamic characteristic are compared with each other and finite element model of the beam compartment of the bridge is updated by changing of some uncertain parameters such as section properties, damages, boundary conditions and material properties to reduce the differences between the results. It is demonstrated that the ambient vibration measurements are enough to identify the most significant modes of long span highway bridges. Maximum differences between the natural frequencies are reduced averagely from %46.7 to %2.39 by model updating. Also, a good harmony is found between mode shapes after finite element model updating.

Guray Arslan, Muzaffer Borekci, Muzaffer Balci, Melih Hacisalihoglu,
Volume 14, Issue 3 (4-2016)

The contribution of concrete to inelastic deformation capacity and shear strength of reinforced concrete (RC) columns failing in shear has been investigated extensively by various researchers. Although RC members are designed to have shear strengths much greater than their flexural strengths to ensure flexural failure according to the current codes, shear degradation of RC columns failing in flexure has not been studied widely. The aim of this study is to investigate the shear degradation of RC columns using finite element analyses (FEA). The results of FEA are compared with the results of experimental studies selected from literature, and it is observed that the lateral load-deflection curves of analysed columns are compatible with the experimental results. Twenty-six RC columns were analysed under monotonically increasing loads to determine the concrete contribution to shear strength. The results of analyses indicate that increasing the ratio of shear to flexural strength reduces the concrete contribution to shear strength of the columns.

Vahid Broujerdian, Mohammad T. Kazemi,
Volume 14, Issue 8 (12-2016)

Complex nature of diagonal tension accompanied by formation of new cracks as well as closing and propagating preexisting cracks has deterred researchers to achieve an analytical and mathematical procedure for accurate predicting shear behavior of reinforced concrete, and there is the lack of a unique theory accepted universally. Shear behavior of reinforced concrete is studied in this paper based on recently developed constitutive laws for normal strength concrete and mild steel bars using nonlinear finite element method. The salient feature of these stress-strain relations is to account the interactive effects of concrete and embedded bars on each other in a smeared rotating crack approach. Implementing the considered constitutive laws into an efficient secant-stiffness based finite element algorithm, a procedure for nonlinear analysis of reinforced concrete is achieved. The resulted procedure is capable of predicting load-deformation behavior, cracking pattern, and failure mode of reinforced concrete. Corroboration with data from shear-critical beam test specimens with a wide range of properties showed the model to predict responses with a good accuracy. The results were also compared with those from the well-known theory of modified compression field and its extension called disturbed stress field model which revealed the present study to provide more accurate predictions. 

Page 1 from 1     

© 2019 All Rights Reserved | International Journal of Civil Engineering

Designed & Developed by : Yektaweb