Search published articles

Showing 2 results for Easy-Going Steel

H. Bahrampoor, S. Sabouri-Ghomi,
Volume 8, Issue 3 (9-2010)

 From the time that civil engineers have used steel in building structures, they tried to increase its strength so as to produce more economic and lighter structures by using more elegant sections. Increase of steel strength is not always useful for all members of a steel structure. In some members under certain conditions, it is needed to reduce the strength as much as possible to improve the behavior of structure. By using very low strength steel according to the Easy-Going Steel (EGS) concept in this research, it is shown that the performance of diagonal Eccentrically Braced Frames (EBFs) improves substantially. For this purpose, a finite element analysis was used to simulate diagonal eccentrically braced frames. Fifteen diagonal eccentrically braced frames were designed through AISC2005. By substitutingvery low strength steelinstead of carbon steel with equal strength in the links, their performance improve fundamentally without any global or local instability in their links.

A. Gholizad, P. Kamrani Moghaddam,
Volume 12, Issue 1 (3-2014)

High performance and reliability of refurbish able knee braced steel frames has been confirmed in previous researches trying to get an optimal design for its configuration. Buckling of diagonal member which affects the hysteretic behavior of KBF under cyclic loadings has not been foreseen in previous evaluations of this system. This deficiency can be improved by utilization of adjustable rotary friction damper device (FDD) as knee element. Diagonal element buckling can be prevented considering a suitable value for FDD sliding threshold moment Mf. Lower values of Mf Lower energy dissipation rate in FDD and this leads to an optimization problem. Nonlinear time history analyses have been performed in addition to lateral cyclic loading analyses to evaluate the response of single story KBF subjected to seismic excitation. Optimal Mf in FDD has been chosen according to these analyses results. Roof displacement and acceleration, base shear and diagonal element’s buckling status have been compared in optimally designed KBF and FDD utilized KBF (FKBF) with different configurations. Nonlinear dynamic analyses have been performed for one, four, eight and twelve story frames under different seismic records with several PGAs. More than 60% displacement response reduction has been earned for the FKBF without considerable increase in base shear.

Page 1 from 1     

© 2019 All Rights Reserved | International Journal of Civil Engineering

Designed & Developed by : Yektaweb