Search published articles


Showing 2 results for Earthquake Damage

S. Eshghi, V. Zanjanizadeh,
Volume 5, Issue 3 (9-2007)
Abstract

This paper presents an experimental study on seismic repair of damaged square reinforced concrete columns with poor lap splices, 90-degree hooks and widely spaced transverse bars in plastic hinge regions according to ACI detailing (pre.1971) and (318-02) using GFRP wraps. Three specimens were tested in “as built” condition and retested after they were repaired by glass fiberreinforced plastic sheets. They were tested under numerous reversed lateral cyclic loading with a constant axial load ratio. FRP composite wraps were used for repairing of concrete columns in critically stressed areas near the column footings. Physical and mechanical properties of composite wraps are described. Seismic performance and ductility of the repaired columns in terms of the hysteretic response are evaluated and compared with those of the original columns. The results indicated that GFRP wraps can be an effective repair measure for poorly confined R/C columns due to short splice length and widely spaced ties with 90-degree anchorage hooks. Both flexural strength and ductility of repaired columns were improved by increasing the existing confinement in critical regions of them.
S. Karimiyan, A. Moghadam, A. . Husseinzadeh Kashan, M. Karimiyan,
Volume 13, Issue 1 (3-2015)
Abstract

Plan irregularity causes local damages being concentrated in the irregular buildings. Progressive collapse is also the collapse of a large portion or whole building due to the local damages in the structure. The effect of irregularity on the progressive collapse potential of the buildings is investigated in this study. This is carried out by progressive collapse evaluation of the asymmetric mid rise and tall buildings in comparison with the symmetric ones via the nonlinear time history analyses in the 6, 9 and 12 story reinforced concrete buildings. The effect of increasing the mass eccentricity levels is investigated on the progressive collapse mechanism of the buildings with respect to the story drift behavior and the number of beam and column collapsed hinges criteria. According to the results, increasing the mass eccentricity levels causes earlier instability with lower number of the collapsed hinges which is necessary to fail the asymmetric buildings and at the same time mitigates the potential of progressive collapse. Moreover, the decreasing trend of the story drifts of the flexible edges is lower than those of the stiff edges and the mass centers and the amount of decrement in the story drifts of the stiff edges is approximately similar to those of the mass centers.

Page 1 from 1     

© 2019 All Rights Reserved | International Journal of Civil Engineering

Designed & Developed by : Yektaweb