Search published articles


Showing 2 results for Diagnosis

Gonçalo Sá, João Sá, Jorge de Brito, B. Amaro,
Volume 12, Issue 2 (6-2014)
Abstract

This paper presents an inspection and diagnosis system customized for rendered walls, both interior and external. It classifies all anomalies capable of affecting renderings and most of the likeliest corresponding causes and is supplemented by anomaly-cause and inter-anomaly correlation matrices. In addition, the diagnosis, repair and maintenance techniques suitable for these anomalies are classified. Examples of the files that contain the exhaustive characterization of the anomalies and diagnosis, repair and maintenance techniques are also presented. The system is the result of an intense literature review, which allowed collecting and organizing the information available on pathology of renders. Next it was validated by mathematical manipulation of the data collected from standard inspections of 55 buildings, in which 150 renderings (100 exterior and 50 interior) were examined. The system proposed may be included in a proactive maintenance strategy, since it is robust, reliable and has been statistically validated. The systematic structure of this system is innovative and can help the inspector by making his/her work more objective and standardizing procedures. Anomalies in wall renderings may be prevented/minimized if buildings are properly managed by developing and implementing proactive maintenance plans that cover the following areas: technology (adequate maintenance and repair solutions, including the selection of materials and execution techniques), economy (minimizing running costs) and functionality (appropriate use).
Fabrizio Palmisano, Angelo Elia,
Volume 12, Issue 2 (6-2014)
Abstract

The increase in the computational capabilities in the last decade has allowed numerical models to be widely used in the analysis, leading to a higher complexity in structural engineering. This is why simple models are nowadays essential because they provide easy and accessible understanding of fundamental aspects of the structural response. Accordingly, this article aims at showing the utility and effectiveness of a simple method (i.e. the Load Path Method) in the interpretation of the behaviour of masonry buildings subjected to foundation settlements due to landslide. Models useful for understanding brick-mortar interface behaviour as well as the global one are reported. The global proposed approach is also validated by using Bi-directional Evolutionary Structural Optimization method. Moreover, drawing inspiration from a case study, the article shows that the proposed approach is useful for the diagnosis of crack patterns of masonry structures subjected to landslide movements.

Page 1 from 1     

© 2019 All Rights Reserved | International Journal of Civil Engineering

Designed & Developed by : Yektaweb