Search published articles


Showing 37 results for Cyclic Load

H. Salehzadeh, D.c. Procter, C.m. Merrifield,
Volume 4, Issue 1 (3-2006)
Abstract

Carbonate materials are mostly found in tropical areas, where exploiting gas and oil resources are of high concern. Their unique behavior under shear loading first was recognised during oil resources investigations in the Persian Gulf. Off-shore structures have been placed on carbonate soils which are highly crushable.During storms cyclic loading imposes on the bases of structures lied down on seabed. Cyclic loading, therefore, may trigger liquefaction phenomenon which leads to soil collapse and a catostrophic event. Therefore, stability of these expensive structures need to be investigated. To this aim carbonate sand in medium dense to medium dense state was considered and its response under varied cyclic shear stress ratio was studied.
H. Soltani-Jigheh, A. Soroush,
Volume 4, Issue 3 (9-2006)
Abstract

This paper presents the results of a series of monotonic and post-cyclic triaxial tests carried out on a clay specimen and three types of clay-sand mixed specimens. The focus of the paper is on the post-cyclic mechanical behavior of the mixed specimens, as compared to their monotonic behavior. Analyses of the tests results show that cyclic loading degrade undrained shear strength and deformation modulus of the specimens during the post-cyclic monotonic loading. The degradation depends on the sand content, the cyclic strain level and to some degrees to the consolidation pressure.
A.a. Khosroshahi, S.a. Sadrnejad,
Volume 5, Issue 1 (3-2007)
Abstract

A framework for development of constitutive models including damage progress, based on semi-micromechanical aspects of plasticity is proposed for concrete. The model uses sub-loading surface with multilaminate framework to provide kinematics and isotropic hardening/softening in the ascending/descending branches of loading and can be able to keep stress/stain paths histories for each plane separately. State of stresses on planes is divided to four basic stress patterns i.e. pure compression, increasing compression-and shear, decreasing compression-shear and tension-shear and used in derivation of plasticity equations. Under this kind of categorized form the model is capable of predicting behavior of concrete under any stress/strain path such as uniaxial, biaxial and triaxial in the monotonic and cyclic loading, Also this model is capable of predicting the effects of principal stress/strain axes rotations and consequent plastic flow and has the potential to simulate the behavior of material with anisotropy, fabric pattern, slip/weak planes and crack opening/closing. The material parameters of model are calibrated by optimum fitting of the basic test data available in the literature. The model results under both monotonic and cyclic loading have been compared with experimental results to show capability of model.
S. Eshghi, V. Zanjanizadeh,
Volume 5, Issue 3 (9-2007)
Abstract

This paper presents an experimental study on seismic repair of damaged square reinforced concrete columns with poor lap splices, 90-degree hooks and widely spaced transverse bars in plastic hinge regions according to ACI detailing (pre.1971) and (318-02) using GFRP wraps. Three specimens were tested in “as built” condition and retested after they were repaired by glass fiberreinforced plastic sheets. They were tested under numerous reversed lateral cyclic loading with a constant axial load ratio. FRP composite wraps were used for repairing of concrete columns in critically stressed areas near the column footings. Physical and mechanical properties of composite wraps are described. Seismic performance and ductility of the repaired columns in terms of the hysteretic response are evaluated and compared with those of the original columns. The results indicated that GFRP wraps can be an effective repair measure for poorly confined R/C columns due to short splice length and widely spaced ties with 90-degree anchorage hooks. Both flexural strength and ductility of repaired columns were improved by increasing the existing confinement in critical regions of them.
M.kazem Sharbatdar,
Volume 6, Issue 1 (3-2008)
Abstract

FRPs (fiber reinforced polymer) possess many favorable characteristics suitable and applicable for construction industry when compared with steel reinforcement. There are new ideas to use FRPs as longitudinal or transverse reinforcement for new concrete elements particularly for bridge decks or beams. Although high tensile strength of FRP is main characteristic for applications at both areas, its weakness to bending and linear stress-strain behavior with virtually no ductility, makes it vulnerable to probably premature failures under reversal tension-compression loading during earthquake. A pilot research project has been conducted to explore the characteristics of large-scale cantilever concrete beams reinforced with FRP re-bars and grids and were tested under either simulated cyclic loading or monotonically increasing lateral loading. This paper presents the test parameters and results obtained during research. The analytical relationships are compared with those recorded experimentally, and test results showed the diagonal cracks and either rupturing of FRP bars in tension or stability failure in compression bars at long or short shear span beams. The comparison of nominal moment capacities between analytical and experimental values confirms that plane section analysis is applicable to FRP reinforced concrete members.
M.a. Khan, A. Usmani, S.s. Shah, H. Abbas,
Volume 6, Issue 2 (6-2008)
Abstract

In the present investigation, the cyclic load deformation behaviour of soil-fly ash layered system is

studied using different intensities of failure load (I = 25%, 50% and 75%) with varying number of cycles (N =

10, 50 and 100). An attempt has been made to establish the use of fly ash as a fill material for embankments of

Highways and Railways and to examine the effect of cyclic loading on the layered samples of soil and fly ash.

The number of cycles, confining pressures and the intensity of loads at which loading unloading has been

performed were varied. The resilient modulus, permanent strain and cyclic strength factor are evaluated from

the test results and compared to show their variation with varying stress levels. The nature of stress-strain

relationship is initially linear for low stress levels and then turns non-linear for high stress levels. The test

results reveal two types of failure mechanisms that demonstrate the dependency of consolidated undrained

shear strength tests of soil-fly ash matrix on the interface characteristics of the layered soils under cyclic

loading conditions. Data trends indicate greater stability of layered samples of soil-fly ash matrix in terms of

failure load (i) at higher number of loading-unloading cycles, performed at lower intensity of deviatoric stress,

and (ii) at lower number of cycles but at higher intensity of deviatoric stress.


M. Reza Esfahani,
Volume 6, Issue 3 (9-2008)
Abstract

In this paper, the effect of cyclic loading on punching strength of flat slabs strengthened with Carbon Fiber Reinforced Polymer (CFRP) sheets is studied. Experimental results of ten slab specimens under monotonic and cyclic loading are analyzed. Eight specimens were strengthened with CFRP sheets on the tensile face of the slabs and the two other specimens were kept un-strengthened as control specimens. The width of CFRP sheets varied in different specimens. After the tests, the punching shear strength of specimens under cyclic loading was compared with those with monotonic loading. The comparison of results shows that cyclic loading decreases the effect of CFRP sheets on punching shear strengthening. This decrease was more for the specimens with a larger value of reinforcing steel ratio. Therefore, it can be concluded that for specimens with large reinforcing steel ratios, cyclic loading may completely eliminate the effect of CFRP sheets on shear strengthening of slabs.
A.r. Rahai, M.m. Alinia, S.m.f Salehi,
Volume 7, Issue 1 (3-2009)
Abstract

Concentric bracing is one of the most common lateral load resistant systems in building frames, and are

applied to many structures due to their manufacturing simplicity and economics. An important deficiency in the

bracing members is their irregular hysteretic loops under cyclic loading. In order to overcome this problem, it is

advised to restrain braces against buckling under compression, since buckling restrained frames dissipate a large

amount of energy. One method to restrain braces against buckling is to cover them with concrete. A proper covering

can prevent the core from buckling and provide similar capacities whether in tension or compression which would

produce regular hysteric curves. In this study, the behavior of buckling restrained braces (BRB) has been investigated

by considering different types of surrounding covers. The steel core is encased in concrete with different coverings. The

covering types include steel tubes, PVC pipes, and FRP rolled sheets. Experimental and numerical analyses were

implemented. According to the results, PVC pipes and FRP sheets are suitable alternatives to steel pipes. Furthermore,

the behavior of several types of steel cores was assessed since, applying steel with high ductility promotes the energy

dissipation of the brace. Finally, the effect of the separating layer between the steel core and the concrete on the

performance of bracing was evaluated.


Arash Nayeri, Kazem Fakharian,
Volume 7, Issue 4 (12-2009)
Abstract

Abstract: This paper presents the results of pullout tests on uniaxial geogrid embedded in silica sand under monotonic and cyclic pullout forces. The new testing device as a recently developed automated pullout test device for soil-geogrid strength and deformation behavior investigation is capable of applying load/displacement controlled monotonic/cyclic forces at different rates/frequencies and wave shapes, through a computer closed-loop system. Two grades of extruded HDPE uniaxial geogrids and uniform silica sand are used throughout the experiments. The effects of vertical surcharge, sand relative density, extensibility of reinforcement and cyclic pullout loads are investigated on the pullout resistance, nodal displacement distributions, post-cyclic pullout resistance and cyclic accumulated displacement of the geogrid. Tell-tale type transducers are implemented along the geogrid at several points to measure the relative displacements along the geogrid embedded length. In monotonic tests, decrease in relative displacement between soil and geogrid by increase of vertical stress and sand relative density are the main conclusions structural stiffness of geogrid has a direct effect on pullout resistance in different surcharges. In cyclic tests it is observed that the variation of post-cyclic strength ranges from minus 10% to plus 20% of monotonic strength values and cyclic accumulated displacements are increased as normal pressure increase, but no practical specific comment can be made at this stage on the post-cyclic strength of geogrids embedded in silica sand. It is also observed that in loose sand condition, the cyclic accumulated displacements are considerably smaller as compared to dense sand condition.
H. Soltani-Jigheh, A. Soroush,
Volume 8, Issue 2 (6-2010)
Abstract

Mixed clayey soils occur as mixtures of sand (or gravel) and clay in widely varying proportions. Their

engineering behavior has not been comprehensively studied yet. An experimental program, comprising monotonic,

cyclic, and post-cyclic triaxial tests was undertaken on compacted clay-granular material mixtures, having different

proportions of clay and sand or gravel. This paper presents the results of cyclic triaxial tests and explains the behavior

of the mixtures based on number of loading cycles, cyclic strain amplitude, granular material content, grain size, and

effective confining pressure. The results indicate an increase in degree of degradation and cyclic loading-induced pore

water pressure as the number of loading cycles, cyclic strain and granular material content increase. Also the results

show that the grain size has no significant effect on the degree of degradation and cyclic loading-induced pore water

pressure in the specimens. The effect of granular material content on pore water pressure during cyclic loading in

equal-stress-level was also examined. The pore water pressure increases with the increase of granular material

content.


O. Omidi, V. Lotfi,
Volume 8, Issue 3 (9-2010)
Abstract

 Neither damage mechanics model nor elastoplastic constitutive law can solely describe the behavior of concrete satisfactorily. In fact, they both fail to represent proper unloading slopes during cyclic loading. To overcome the disadvantages of pure plastic models and pure damage approaches, the combined effects need to be considered. In this regard, various classes of plastic-damage models have been recently proposed. Here, the theoretical basics of the plastic-damage model originally proposed by Lubliner et al. and later on modified by Lee and Fenves is initially presented and its numerical aspects in three-dimensional space are subsequently emphasized. It should be mentioned that a part of the implementation in 3-D space needs to be reformulated due to employing a hyperbolic potential function to treat the singularity of the original linear form of plastic flow proposed by Lee and Fenves. The consistent algorithmic tangent stiffness, which is utilized to accelerate the convergence rate in solving the nonlinear global equations, is also derived. The validation and evaluation of the model to capture the desired behavior under monotonic and cyclic loadings are shown with several simple one-element tests. These basic simulations confirm the robustness, accuracy, and efficiency of the algorithm at the local and global levels. At the end, a four-point bending test is examined to demonstrate the capabilities of the model in real 3-D applications.


Mohammad Hassan Baziar, Habib Shahnazari, Hassan Sharafi,
Volume 9, Issue 2 (6-2011)
Abstract

This paper discusses the applicability of a simple model to predict pore water pressure generation in non-plastic silty soil during

cyclic loading. Several Stress-controlled cyclic hollow torsional tests were conducted to directly measure excess pore water pressure

generation at different levels of cyclic stress ratios (CSR) for the specimens prepared with different silt contents (SC=0% to 100%).

The soil specimens were tested under three different confining pressures (&sigma'3= 60, 120, 240 kPa) at a constant relative density

(Dr=60%), with different silt contents. Results of these tests were used to investigate the behavior of silty sands under undrained

cyclic hollow torsional loading conditions. In general, beneficial effects of the silt were observed in the form of a decrease in excess

pore water pressure and an increase in the volumetric strain. Modified model for pore water pressure generation model based on

the test results are also presented in this paper. Comparison of the proposed pore pressure build up model with seed’s model

indicates the advantage of proposed model for soil with large amount of silt.


Kabir Sadeghi,
Volume 9, Issue 3 (9-2011)
Abstract

An energy based damage index based on a new nonlinear Finite element (FE) approach applicable to RC structures subjected to cyclic, earthquake or monotonic loading is proposed. The proposed method is based on the evaluation of nonlinear local degradation of materials and taking into account of the pseudo-plastic hinge produced in the critical sections of the structure. A computer program is developed, considering local behavior of confined and unconfined concretes and steel elements and also global behavior and damage of reinforced concrete structures under cyclic loading. The segments located between the pseudoplastic hinges at critical sections and the inflection points are selected as base-models through simulation by the proposed FE method. The proposed damage index is based on an energy analysis method considering the primary half-cycles energy absorbed by the structure during loading. The total primary half-cycles absorbed energy to failure is used as normalizing factor. By using the proposed nonlinear analytical approach, the structure's force-displacement data are determined. The damage index is then calculated and is compared with the allowable value. This damage index is an efficient means for deciding whether to repair or demolish structures after an earthquake. It is also useful in the design of new structures as a design parameter for an acceptable limit of damage defined by building codes.  The proposed approach and damage index are validated by results of tests carried out on reinforced concrete columns subjected to cyclic biaxial bending with axial force.


S. N. Moghaddas Tafreshi, Gh. Tavakoli Mehrjardi, M. Ahmadi,
Volume 9, Issue 4 (12-2011)
Abstract

The results of laboratory model tests and numerical analysis on circular footings supported on sand bed under incremental

cyclic loads are presented. The incremental values of intensity of cyclic loads (loading, unloading and reloading) were applied

on the footing to evaluate the response of footing and also to obtain the value of elastic rebound of the footing corresponding

to each cycle of load. The effect of sand relative density of 42%, 62%, and 72% and different circular footing area of 25, 50,

and 100cm2 were investigated on the value of coefficient of elastic uniform compression of sand (CEUC). The results show that

the value of coefficient of elastic uniform compression of sand was increased by increasing the sand relative density while with

increase the footing area the value of coefficient of elastic uniform compression of sand was decreases. The responses of footing

and the quantitative variations of CEUC with footing area and soil relative density obtained from experimental results show a

good consistency with the obtained numerical result using “FLAC-3D”.


A. Asakereh, S.n. Moghaddas Tafreshi, M. Ghazavi,
Volume 10, Issue 2 (6-2012)
Abstract

This paper describes a series of laboratory model tests on strip footings supported on unreinforced and geogrid-reinforced sand
with an inside void. The footing is subjected to a combination of static and cyclic loading. The influence of various parameters
including the embedment depth of the void, the number of reinforcement layers, and the amplitude of cyclic load were studied.
The results show that the footing settlement due to repeated loading increased when the void existed in the failure zone of the
footing and decreased with increasing the void vertical distance from the footing bottom and with increasing the reinforcement
layers beneath the footing. For a specified amplitude of repeated load, the footing settlement is comparable for reinforced sand,
thicker soil layer over the void and much improved the settlement of unreinforced sand without void. In general, the results
indicate that, the reinforced soil-footing system with sufficient geogride-reinforcement and void embedment depth behaves much
stiffer and thus carries greater loading with lower settlement compared with unreinforced soil in the absent of void and can
eliminate the adverse effect of the void on the footing behavior. The final footing settlement under repeated cyclic loading becomes
about 4 times with respect to the footing settlement under static loading at the same magnitude of load applied.


R. Abbasnia, A. Holakoo,
Volume 10, Issue 3 (9-2012)
Abstract

One important application of fiber reinforced polymer (FRP) is to confine concrete as FRP jackets in seismic retrofit process

of reinforced concrete structures. Confinement can improve concrete properties such as compressive strength and ultimate axial

strain. For the safe and economic design of FRP jackets, the stress-strain behavior of FRP-confined concrete under monotonic

and cyclic compression needs to be properly understood and modeled. According to literature review, it has been realized that

although there are many studies on the monotonic compressive loading of FRP-confined concrete, only a few studies have been

conducted on the cyclic compressive loading. Therefore, this study is aimed at investigating the behavior of FRP-confined

concrete under cyclic compressive loading. A total of 18 cylindrical specimens of FRP-confined concretewere tested in uniaxial

compressive loading with different wrap thickness, and loading patterns. The results obtained from the tests are presented and

examined based on analysis of test results predictive equations for plastic strain and stress deterioration were derived. The

results are also compared with those from two current models,comparison revealed the lack of sufficient accuracy of the current

models to predict stress-strain behavior and accordingly some provisions should be incorporated.


A. Gholizad, P. Kamrani Moghaddam,
Volume 12, Issue 1 (3-2014)
Abstract

High performance and reliability of refurbish able knee braced steel frames has been confirmed in previous researches trying to get an optimal design for its configuration. Buckling of diagonal member which affects the hysteretic behavior of KBF under cyclic loadings has not been foreseen in previous evaluations of this system. This deficiency can be improved by utilization of adjustable rotary friction damper device (FDD) as knee element. Diagonal element buckling can be prevented considering a suitable value for FDD sliding threshold moment Mf. Lower values of Mf Lower energy dissipation rate in FDD and this leads to an optimization problem. Nonlinear time history analyses have been performed in addition to lateral cyclic loading analyses to evaluate the response of single story KBF subjected to seismic excitation. Optimal Mf in FDD has been chosen according to these analyses results. Roof displacement and acceleration, base shear and diagonal element’s buckling status have been compared in optimally designed KBF and FDD utilized KBF (FKBF) with different configurations. Nonlinear dynamic analyses have been performed for one, four, eight and twelve story frames under different seismic records with several PGAs. More than 60% displacement response reduction has been earned for the FKBF without considerable increase in base shear.
R. Vidjeapriya, V. Vasanthalakshmi, K. P. Jaya,
Volume 12, Issue 1 (3-2014)
Abstract

The present study focuses on the performance of precast concrete beam-column dowel connections subjected to cyclic loading by conducting experiments. In this study, one-third scale model of two types of precast and a monolithic beam-column connection were cast and tested under reverse cyclic loading. The precast connections considered for this study is a beam-column connection where beam is connected to column with corbel using (i) dowel bar and (ii) dowel bar with cleat angle. The experimental results of the precast specimens have been compared with that of the reference monolithic connection. The sub-assemblage specimens have been subjected to reverse cyclic displacement-controlled lateral loading applied at the end of the beam. The performance of the precast connections in terms of the ultimate load carrying capacity, post- elastic strength enhancement factor, load-displacement hysteresis behaviour, moment-rotation hysteresis behaviour, energy dissipation capacity, equivalent viscous damping ratio and ductility factor were compared with that of the monolithic beam-column connection. The monolithic specimen was found to perform better when compared to the precast specimens in terms of strength and energy dissipation. In terms of ductility, the precast specimen using dowel bar and cleat angle showed better behaviour when compared to the reference monolithic specimen.
P. Vahabkashi, A. R. Rahai, A. Amirshahkarami,
Volume 12, Issue 1 (3-2014)
Abstract

Piles or drilled shafts used in bridge foundation, waterfronts, and high rise buildings are generally subjected to lateral loads. In order to study the effect of concrete pile geometry on the structural behavior in layered soils, several models with different shapes and dimensions for piles and different properties for two soil layers with variable thickness were selected and analyzed using the finite difference method. The performance of piles situated in layered granular soil with different compaction and thicknesses were studied in two cycles of lateral loading and unloading. The applied finite difference procedure is also validated based on experimental and published results. The pile head displacement of different models due to their overall deformation and rotation were calculated under maximum loading. For a comparison of pile head displacement due to their overall deformation and rotation in different models, the "performance index” is defined as the ratio of “displacement due to deformation” to the “total displacement”.
A. H. Eghbali, K. Fakharian,
Volume 12, Issue 1 (1-2014)
Abstract

Portland cement can be mixed with sand to improve its mechanical characteristics. Many studies are reported in literature on this topic, but the effect of principal stress rotation has not been investigated yet. Considering the inherent anisotropy of most sands, it is not clear whether the added cement shall contribute to equal increase in strength and stiffness at vertical and horizontal directions or not. Furthermore, it is not well understood how the cement as an additive in non-compacted (loose) sand compared to compacted (dense) sand without cement, contribute to improving the material behavior in undrained condition such as limiting the deformations and the liquefaction potential. In this research, undrained triaxial and simple shear tests under different stress paths are carried out on different mixtures of Portland cement (by adding 1.5, 3 and 5 percent) with clean sand to investigate the effect of principal stress rotations. The triaxial test results revealed that the cement mixture reduces the anisotropy, while it improves the mixture mechanical properties compared to compacted sand without cement. The results of the simple shear tests validated the triaxial test results and further clarified the effect of the  parameter or rotation of principal stresses on the behavior of cemented sand mixtures.

Page 1 from 2    
First
Previous
1
 

© 2019 All Rights Reserved | International Journal of Civil Engineering

Designed & Developed by : Yektaweb