Search published articles

Showing 3 results for Construction Waste

A. Allahverdi, E. Najafi Kani,
Volume 7, Issue 3 (9-2009)

It has been shown that geopolymerization can transform a wide range of waste aluminosilicate materials into building materials with excellent chemical and physical properties such as fire and acid resistance. In this research work, geopolymerization of construction waste materials with different alkali-activators based on combinations of Na2SiO3 and NaOH has been investigated. A number of systems were designed and prepared with water-to-dry binder ratio, silica modulus, and sodium oxide concentration were adjusted at different levels and setting time and 28-day compressive strength were studied. The results obtained reveal that construction wastes can be activated using a proportioned mixture of Na2SiO3 and NaOH resulting in the formation of a geopolymer cement system exhibiting suitable workability and acceptable setting time and compressive strength. Laboratory techniques of Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM) were utilized for studying molecular and microstructure of the materials.
Jiuping Xu, Pei Wei,
Volume 10, Issue 1 (3-2012)

In this paper, a location allocation (LA) problem in construction and demolition (C&D) waste management (WM) is studied. A bi-level model for this problem under a fuzzy random environment is presented where the upper level is the governments who sets up the processing centers, and the lower level are the administrators of different construction projects who control C&D waste and the after treatment materials supply. This model using an improved particle swarm optimization program based on a fuzzy random simulation (IPSO-based FRS) is able to handle practical issues. A case study is presented to illustrate the effectiveness of the proposed approach. Conclusions and future research directions are discussed.

V.v. Sakhare, S.p. Raut, S.a. Mandavgane, R.v. Ralegaonkar,
Volume 13, Issue 4 (12-2015)

Energy conservation in buildings plays a vital role for sustainable development of societies and nations. Although, newer buildings in developing nations are being constructed using energy conservation approach, existing buildings have higher energy demand to meet the desired comfort. Excessive energy demand for cooling the built environment is a major problem over most of the arid climatic zones. The problem is predominant in all the top storied buildings which are directly under exposed roof condition. In order to reduce the overheating of the roof surface a composite combination of reflecting-cum-insulating (R-I) material was developed. The sustainable materials viz., expanded polystyrene (construction waste), saw dust (industrial waste), and the false ceiling panels prepared from industrial waste were used for the development of sustainable R-I material. The R-I material was retrofitted over the existing roof of a model room in an educational building over composite climate (Nagpur, India) and was analyzed experimentally for the period of a year. The thermal resistance of the overall roof assembly was increased from 0.28 to 0.55 m² K/W, which in turn helped to achieve 16% of the duration of the year under thermal comfort. The developed R-I material has also an advantage of low cost (INR 900 per sq. m.) of installation as well as light weight (50 kg/m²) retrofitting solution. The R-I product can further be applied on larger roof areas by the designers to reduce the cooling load of the built environment as well as increase the occupants comfort over the local climatic zone.

Page 1 from 1     

© 2019 All Rights Reserved | International Journal of Civil Engineering

Designed & Developed by : Yektaweb