Search published articles


Showing 10 results for Cohesive Soil

H. Ghiassian,
Volume 2, Issue 1 (3-2004)
Abstract

A study of bearing capacity and compressibility characteristics of cohesive soil, reinforced by geogrid and supporting square footing loads has been conducted. The lack of adequate frictional resistance between clay and reinforcing elements was compensated by using a thin sand layer (lens) encapsulating the geogrid sheet. In this way, tensile forces induced in the geogrid were transferred to the bulk clay medium through the sand particles and soil reinforcement was improved Experiments were conduced on two sets of specimens, one set of 1 x 1 x 1 m dimension and the footing size of 19 x 19 cm (series A), and the other set of 0.15 x 0.15 x 0.15 m dimension and the footing size of 3.7 x 3.7 cm (series B). The loading systems for the above specimens were stress controlled and strain controlled respectively. All specimens were saturated and presumably loaded under an undrained condition. The results qualitatively confirmed the effectiveness of the sand lens in improving the bearing capacity and settlement characteristics of the model footing. In series A, the maximum increase in the bearing capacity due to the presence of the sand lens was 17% whereas in series B, the amount of increase was 24%. The percentage reductions in the settlement for these results were 30% and 46% respectively.
Faradjollah Askari, Orang Farzaneh,
Volume 6, Issue 1 (3-2008)
Abstract

Although some 3D slope stability algorithms have been proposed in recent three decades, still role of pore pressures in three dimensional slope stability analyses and considering the effects of pore water pressure in 3D slope stability studies needs to be investigated. In this paper, a limit analysis formulation for investigation of role of the pore water pressure in three dimensional slope stability problems is presented. A rigid-block translational collapse mechanism is used, with energy dissipation taking place along planar velocity discontinuities. Results are compared with those obtained by others. It was found that water pressure causes the three-dimensional effects to be more significant, especially in gentle slopes. This may be related to the larger volume of the failure mass in gentle slopes resulting in more end effects. Dimensionless stability factors for three dimensional slope stability analyses are presented - including the 3D effect of the pore water pressure – for different values of the slope angle in cohesive and noncohesive soils.
A. Ghanbari, M. Ahmadabadi,
Volume 8, Issue 2 (6-2010)
Abstract

Inclined retaining walls with slopes less than perpendicular are appropriate candidates in several

engineering problems. Yet, to the knowledge of authors, only a few analytical solution for calculation of active earth

pressure on such walls, which will be usually smaller than the same pressure on vertical ones, has been presented

neither in research papers nor in design codes. Considering limit equilibrium concept in current research, a new

formulation is proposed for determination of active earth pressure, angle of failure wedge and application point of

resultant force for inclined walls. Necessary parameters are extracted assuming the pseudo-static seismic coefficient

to be valid in earthquake conditions. Moreover, based on Horizontal Slices Method (HSM) a new formulation is

obtained for determining the characteristics of inclined walls in granular and or frictional cohesive soils. Findings of

present analysis are then compared with results from other available methods in similar conditions and this way, the

validity of proposed methods has been proved. Finally according to the results of this research, a simplified relation

for considering the effect of slope in reduction of active earth pressure and change in failure wedge in inclined

retaining walls has been proposed.


Khelifa Harichane, Mohamed Ghrici, Said Kenai,
Volume 9, Issue 2 (6-2011)
Abstract

When geotechnical engineers are faced with cohesive clayey soils, the engineering properties of those soils may need to be

improved to make them suitable for construction. The aim of this paper is to study the effect of using lime, natural pozzolana or

a combination of both on the geotechnical characteristics of two cohesive soils. Lime or natural pozzolana were added to these

soils at ranges of 0-8% and 0-20%, respectively. In addition, combinations of lime-natural pozzolana were added at the same

ranges. Test specimens were subjected to compaction tests and shear tests. Specimens were cured for 1, 7, 28 and 90 days after

which they were tested for shear strength tests. Based on the experimental results, it was concluded that the combination limenatural

pozzolana showed an appreciable improvement of the cohesion and internal friction angle with curing period and

particularly at later ages for both soils.


A. H. Eghbali, K. Fakharian,
Volume 12, Issue 1 (1-2014)
Abstract

Portland cement can be mixed with sand to improve its mechanical characteristics. Many studies are reported in literature on this topic, but the effect of principal stress rotation has not been investigated yet. Considering the inherent anisotropy of most sands, it is not clear whether the added cement shall contribute to equal increase in strength and stiffness at vertical and horizontal directions or not. Furthermore, it is not well understood how the cement as an additive in non-compacted (loose) sand compared to compacted (dense) sand without cement, contribute to improving the material behavior in undrained condition such as limiting the deformations and the liquefaction potential. In this research, undrained triaxial and simple shear tests under different stress paths are carried out on different mixtures of Portland cement (by adding 1.5, 3 and 5 percent) with clean sand to investigate the effect of principal stress rotations. The triaxial test results revealed that the cement mixture reduces the anisotropy, while it improves the mixture mechanical properties compared to compacted sand without cement. The results of the simple shear tests validated the triaxial test results and further clarified the effect of the  parameter or rotation of principal stresses on the behavior of cemented sand mixtures.
J. Nazari Afshar, M. Ghazavi,
Volume 12, Issue 1 (1-2014)
Abstract

The Stone-column is a useful method for increasing the bearing capacity and reducing settlement of foundation soil. The prediction of accurate ultimate bearing capacity of stone columns is very important in soil improvement techniques. Bulging failure mechanism usually controls the failure mechanism. In this paper, an imaginary retaining wall is used such that it stretches vertically from the stone column edge. A simple analytical method is introduced for estimation of the ultimate bearing capacity of the stone column using Coulomb lateral earth pressure theory. Presented method needs conventional Mohr-coloumb shear strength parameters of the stone column material and the native soil for estimation the ultimate bearing capacity of stone column. The validity of the developed method has been verified using finite element method and test data. Parametric studies have been carried out and effects of contributing parameters such as stone column diameter, column spacing, and the internal friction angle of the stone column material on the ultimate bearing capacity have been investigated.
A. Eslami, I. Tajvidi, M. Karimpour-Fard,
Volume 12, Issue 1 (1-2014)
Abstract

Three common approaches to determine the axial pile capacity based on static analysis and in-situ tests are presented, compared and evaluated. The Unified Pile Design (UPD), American Petroleum Institute (API) and a SPT based methods were chosen to be validated. The API is a common method to estimate the axial bearing capacity of piles in marine environments, where as the others are currently used by geotechnical engineers. Seventy pile load test records performed in the northern bank of Persian Gulf with SPT profile have been compiled for methods evaluation. In all cases, pile capacities were measured using full scale static compression and/or pull out loading tests. As the loading tests in some cases were in the format of proof test without reaching the plunging or ultimate bearing capacity, for interpretation the results, offset limit load criteria was employed. Three statistical and probability based approaches in the form of a systematic ranking, called Rank Index, RI, were utilized to evaluate the performance of predictive methods. Wasted Capacity Index (WCI) concept was also applied to validate the efficiency of current methods. The evaluations revealed that among these three predictive methods, the UPD is more accurate and cost effective than the others.
M. Anwer Khan,
Volume 13, Issue 1 (3-2015)
Abstract

Investigation of projectiles penetration phenomenon has been carried out in non-cohesive soil (Sand) targets under dry, saturated and compacted conditions. Analytical studies have been performed on the linear and non-linear soil models to obtain penetration depth formulae for ogival nose projectile and the results are verified by experimental studies. In present work, three ogival nose projectiles each having weight of 1.0 kg and nose angle of 15o, 30o and 45o are dropped from a height of 10.0 m in rectangular tank filled up by non-cohesive soil target. The rigid projectiles made an impact on a uniform target material at normal incidence with striking velocity of 14 m/s and proceeded to penetrate at rigid-body velocity. The models require geometrical parameters of the projectile types, velocity and target shear strength for the overall penetration depth of projectile. In addition, some parametric studies have been also carried out for academic and field interest.
Dr M. Khodaparast, Dr A.m. Rajabi, Mr. M. Mohammadi,
Volume 13, Issue 2 (6-2015)
Abstract

The Dynamic Probe is an effective tool used in site investigation. It is more economic than the use of direct drilling, particularly in explorations with moderate depth. This paper presents an experimental study to investigate the capability of using dynamic probing to evaluate the shear strength and compaction percent of fine soil. A series of dynamic probe tests were carried out at 6 different sites in the Khozestan, Hormozgan and Qom provinces in the central and southern regions of Iran. The repeatability of the results is considered and new empirical equations relating the dynamic point resistance to undrained shear strength and compaction percent are proposed. For undrained shear strength evaluation of fine soils, i.e. clay and silty clay soils, a reliable site-specific correlation between qd and Cu can be developed when considering the correlation between log qd and log Cu. Also compaction present can be evaluated by qd. These equations can be developed to provide site-specific relationships based upon geotechnical data at each new location. Using this approach an estimation of the undrained shear strength Cu and compaction percent CP can be determined from dynamic probe tests with acceptable accuracy. The present paper also encourages the wider application of dynamic probing for site investigation in fine soils.
Krzysztof Sternik,
Volume 15, Issue 3 (5-2017)
Abstract

Constitutive model for saturated cohesive soils based on the bounding surface plasticity notion with anisotropic hardening law is presented in the paper. The model predicts inelastic behaviour of overconsolidated cohesive soils. The projection centre is the only point in the stress space which represents elastic soil behaviour. Approximation of the plastic modulus within the preconsolidation domain is made using the radial mapping rule between a projection centre and a reflecting point on the bounding surface. The projection centre changes its position each time when stress path turns rapidly of more than 90°. The configuration of the elliptic bounding surface is governed by preconsolidation effective pressure pc which depends on change of plastic both volumetric and deviatoric strain. Associated flow rule has been assumed in the formulation. Integration of constitutive relations is done according to forward Euler scheme with error control proposed by Sloan. The effectiveness of the proposed model is illustrated in both monotonic and cyclic loading in the homogeneous triaxial drained and undrained conditions.



Page 1 from 1     

© 2019 All Rights Reserved | International Journal of Civil Engineering

Designed & Developed by : Yektaweb