Search published articles

Showing 74 results for Code

Soroush A., Koohi Sh.,
Volume 2, Issue 4 (12-2004)

Lateral spreading of liquefied saturated sandy deposits happens during and shortly afterearthquakes. This paper first reviews this phenomenon by means of reviewing and comparingobservations on case histories and experimental works. Based on the results from the review andcomparison, a mechanism for describing lateral spreading will be suggested. The Finn model,adopted in the Computer code FLAC is employed to carry out numerical analyses of lateralspreading of the Wildlife Site, happened during the 1987 Superstition Hills earthquake. First themodel is calibrated by means of numerical analysis of the first centrifuge model test of theVELACS Project. For the Wildlife site, three types of analysis are carried out: a) coupledliquefaction-consolidation analysis using the coefficient of permeability (K1) of the liquefiedlayers, as reported in the literature b) analysis type (a), but with K equal to 0.1K1, and c) a fullyundrained liquefaction analysis. The analyses results, in forms of excess pore water pressures andsurface displacements, indicated that the fully undrained behavior of the liquefied layers betterrepresents the behavior and response of the site during the earthquake.
Kaveh A., Shahrouzi M.,
Volume 3, Issue 3 (9-2005)

Genetic Algorithm is known as a generalized method of stochastic search and has been successfully applied to various types of optimization problems. By GA s it is expected to improve the solution at the expense of additional computational effort. One of the key points which controls the accuracy and convergence rate of such a process is the selected method of coding/decoding of the original problem variables and the discrete feasibility space to be searched by GAS. In this paper, a direct index coding (DIC) is developed and utilized for the discrete sizing optimization of structures. The GA operators are specialized and adopted for this kind of encoded chromosomes and are compared to those of traditional GA S. The well-known lO-bar truss example from literature is treated here as a comparison benchmark, and the outstanding computational efficiency and stability of the proposed method is illustrated. The application of the proposed encoding method is not limited to truss structures and can also be directly applied to frame sizing problems.
Khaloo R., Sharifian M.,
Volume 3, Issue 3 (9-2005)

Results of an experimental investigation performed to evaluate the effect of various concrete strength levels on behavior of lightweight concrete (LWC) under pure torsion are reported.The principle variable of the testing program was compressive strength of concrete (�'c) which ranged between 6.9 and 81.4 MPa. Ten mixture proportions were utilized for LWC of 1500 to 2050 kg/m3 unit weight. In total, sixty four (thirty two pairs) rectangular specimens with 100x 200 mm cross-section were tested. Ultimate torsion strength of LWC increases as uniaxial compressive strength increases however the increase rate reduces for high levels of concrete strengths. The test results are compared with predictions of elastic and plastic theories for torsion and the ACI Code. The Code underestimates the cracking torque of LWC under pure torsion. A regression equation incorporating test results is higher than the ACI equation prediction by a factor of 1.12.
F. R. Rofooei, N. K. Attari, A. Rasekh, A.h. Shodja,
Volume 4, Issue 3 (9-2006)

Pushover analysis is a simplified nonlinear analysis technique that can be used to estimate the dynamic demands imposed on a structure under earthquake excitations. One of the first steps taken in this approximate solution is to assess the maximum roof displacement, known as target displacement, using the base shear versus roof displacement diagram. That could be done by the so-called dynamic pushover analysis, i.e. a dynamic time history analysis of an equivalent single degree of freedom model of the original system, as well as other available approximate static methods. In this paper, a number of load patterns, including a new approach, are considered to construct the related pushover curves. In a so-called dynamic pushover analysis, the bi-linear and tri-linear approximations of these pushover curves were used to assess the target displacements by performing dynamic nonlinear time history analyses. The results obtained for five different special moment resisting steel frames, using five earthquake records were compared with those resulted from the time history analysis of the original system. It is shown that the dynamic pushover analysis approach, specially, with the tri-linear approximation of the pushover curves, proves to have a better accuracy in assessing the target displacements. On the other hand, when nonlinear static procedure seems adequate, no specific preference is observed in using more complicated static procedures (proposed by codes) compared to the simple first mode target displacement assessment.
A. Haddad, Gh. Shafabakhsh,
Volume 5, Issue 2 (6-2007)

Local site conditions have a strong effect on ground response during earthquakes. Two important soil parameters that control the amplification effects of seismic motions by a soil column are the soil hysteretic damping ratio and shear wave velocity. This paper presents the results of in situ damping ratio measurements performed using continuous surface wave attenuation data at a site in Semnan University campus and analysis used to obtain the near surface soils damping ratio profile. Once the frequency dependent attenuation coefficients are determined, the shear damping ratio profile is calculated using an algorithm based on constrained inversion analysis. A computer code is developed to calculate the shear damping ratio in each soil layer. Comparisons of the in situ shear damping ratio profile determined from continuous surface wave with cross hole independent test measurements are also presented. Values of shear damping ratio, obtained using continuous surface wave measurements, were less than the measured using cross hole tests, possibly because of the higher frequencies used in cross hole tests.
H.r. Ghafouri, B.s. Darabi,
Volume 5, Issue 2 (6-2007)

A new mathematical model for identifying pollution sources in aquifers is presented. The model utilizes Lagrange Constrained Optimization Method (LCOM) and is capable to inversely solve unsteady fluid flow in saturated, heterogeneous, anisotropic confined and/or unconfined aquifers. Throughout the presented model, complete advection-dispersion equation, including the adsorption as well as retardation of contaminant, is considered. The well-known finite element method is used to discretize and solve the governing equations. The model verification is implemented using a hypothetical example. Also, the applicability of the developed code is illustrated by the real field problem of Ramhormoz aquifer in southwestern Iran.
G. Ghodrati Amiri, F. Manouchehri Dana, S. Sedighi,
Volume 6, Issue 3 (9-2008)

By application of design spectra in seismic analyses, determination of design spectra for different site conditions, magnitudes, safety levels and damping ratios will improve the accuracy of seismic analysis results. The result of this research provides different design acceleration spectra based on Iran earthquakes database for different conditions. For this purpose first a set of 146 records was selected according to causative earthquake specifications, device error modification and site conditions. Then the design acceleration spectra are determined for 4 different site conditions presented in Iranian code of practice for seismic resistant design of buildings (Standard No. 2800), different magnitudes (MsO5.5 & Ms>5.5), different damping ratios (0, 2, 5, 10, 20 percent) and also various safety levels (50% & 84%). Also this research compares the determined design spectra with those in Standard No. 2800.
Sassan Eshghi, Khashaiar Pourazin,
Volume 7, Issue 1 (3-2009)

Confined masonry buildings are used in rural and urban areas of Iran. They performed almost satisfactory

during past moderate earthquakes of Iran. There is not a methodology in Iranian Seismic Code (Standard 2800-3rd

edition) to estimate their capacities quantitatively. In line with removing this constraint, an attempt is made to study

in-plane behavior of two squared confined masonry walls with and without opening by using a numerical approach.

These walls are considered based on Iranian Seismic Code requirements. Finite element 2D models of the walls are

developed and a pushover analysis is carried out. To model the non-linear behavior of the confined masonry walls, the

following criteria are used: (1) The Rankine-Hill yield criterion with low orthotropic factor to model the masonry

panel (2) The Rankine yield criterion to model reinforced concrete bond-beams and tie-columns (3) The Coulomb

friction criterion with tension cutoff mode to model the interface zone between the masonry panel and reinforced

concrete members. For this purpose, the unknown parameters are determined by testing of masonry and concrete

samples and by finite element analysis. Comparing the results show that the initial stiffness, the maximum lateral

strength and the ductility factor of walls with and without opening are different. Also, the severe compressed zones of

the masonry panels within the confining elements are found different from what are reported for the masonry panels

of infilled frames by other researchers. This study shows that a further investigation is needed for estimating capacity

of confined masonry walls with and without opening analytically and experimentally. Also where openings, with

medium size are existed, the confining elements should be added around them. These issues can be considered in the

next revisions of Iranian Seismic Code.

A. Arabzadeh, A.r. Rahaie, A. Aghayari,
Volume 7, Issue 3 (9-2009)

In this paper a new method based on Strut-and-Tie Model (STM) is proposed to determine the shear capacity of simply supported RC deep beams and an efficiency factor for concrete with considering the effect of web reinforcements. It is assumed that, the total carried shear force by RC deep beam provided by two independent resistance, namely diagonal concrete strut due to strut-and-tie mechanism and the equivalent resisting force resulted by web reinforcements, web reinforcing reduces the concrete compression softening effect with preventing from the diagonal cracks opening or concrete splitting. The unknown function and parameters are determined from 324 experimental results obtained by other researchers. To validate the proposed method, the obtained results are compared with some of the existing methods and codes such as ACI 318-05 and CSA. The results indicate that the proposed method is capable to predict the shear strength of variety of deep beams with acceptable accuracy.
Prof Javad Farhoudi,
Volume 7, Issue 4 (12-2009)


Induced total pressure by flow, including mean and fluctuating components, around a selected chute block in SAF stilling basins downstream of an ogee spillway was studied. Several pressure holes were selected on various faces of a selected chute block to get enough information regarding the total pressure field. This paper reports the results of an experimental work and measurement of mean and fluctuation pressures around chute blocks of SAF stilling basins. The observations showed that the maximum total pressure varies inversely with Froude number of incoming flow while its position of occurrence follows a quadratic polynomial relation ship. Statistical analysis also showed that the peak instantaneous pressure fluctuations could be as large as ±4.5times the RMS value.It is concluded that pressure fluctuation around the chute blocks may double the magnitude of pressure field around the chute blocks and can not be overlooked in designing such appurtenances.

G. Ghodrati Amiri, A. Asadi,
Volume 7, Issue 4 (12-2009)

Future design procedures for civil structures, especially those to be protected from extreme and blast related

loads, will need to account for temporal evolution of their frequency content. There are, however, several instances

where acceleration time histories are required as seismic input. For example, to determine the ultimate resistance and

to identify modes of structures’ failure, a nonlinear time history analysis is needed. In other cases, acceleration time

histories are required for linear analyses. Many seismic codes require this type of analysis for buildings which have

irregularities. The process of time-frequency analysis made possible by the wavelet transform provides insight into the

character of transient signals through time-frequency maps of the time variant spectral decomposition that traditional

approaches miss. In this paper an approach is examined and a new method for processing the ground motion which is

modeled as a non-stationary process (both in amplitude and frequency), is proposed. This method uses the best basis

search algorithm with wavelet packets. In this approach, the signal is expressed as a linear combination of timefrequency

atoms which are obtained by dilations of the analyzing functions, and are organized into dictionaries as

wavelet packets. Several numerical examples are given to verify the developed models.

M. Mazloom, A.a. Mehrabian,
Volume 7, Issue 4 (12-2009)

Pullback test has no scrupulous theoretical establishment. It is based on the hypothesis that the response of

the structure can be related to the response of an equivalent single degree-of-freedom (SDOF) system. This implies that

the response is controlled by a single mode. In fact, the steel frame of each safe room, which is introduced within the

unreinforced masonry buildings for protecting the lives of residents in catastrophic earthquake failures, contains a

SDOF structural system. In pullback test, the steel frame carries its gravity load first, and then it will be pushed under

an incremental lateral roof displacement pattern, which is imposed to its center of mass. This paper expresses the

results of 13 pullback tests executed by the authors on the steel frames of safe rooms. The results show that pullback

test is a practical method for seismic performance evaluation of safe rooms. Also the performance of these frames

located in a collapsing three storey masonry building is presented with favorable conclusions. In fact, the results of

pullback test of the safe room located at the ground-floor level were compared with the requirements of Iranian code

for seismic resistant design and it was concluded that the steel frame had an acceptable performance against seismic


A. Ghanbari, M. Ahmadabadi,
Volume 8, Issue 2 (6-2010)

Inclined retaining walls with slopes less than perpendicular are appropriate candidates in several

engineering problems. Yet, to the knowledge of authors, only a few analytical solution for calculation of active earth

pressure on such walls, which will be usually smaller than the same pressure on vertical ones, has been presented

neither in research papers nor in design codes. Considering limit equilibrium concept in current research, a new

formulation is proposed for determination of active earth pressure, angle of failure wedge and application point of

resultant force for inclined walls. Necessary parameters are extracted assuming the pseudo-static seismic coefficient

to be valid in earthquake conditions. Moreover, based on Horizontal Slices Method (HSM) a new formulation is

obtained for determining the characteristics of inclined walls in granular and or frictional cohesive soils. Findings of

present analysis are then compared with results from other available methods in similar conditions and this way, the

validity of proposed methods has been proved. Finally according to the results of this research, a simplified relation

for considering the effect of slope in reduction of active earth pressure and change in failure wedge in inclined

retaining walls has been proposed.

S.m. Moosavi, M.k. Jafari , M. Kamalian, A. Shafiee ,
Volume 8, Issue 2 (6-2010)

Ground differential movements due to faulting have been observed to cause damage to engineered structures

and facilities. Although surface fault rupture is not a new problem, there are only a few building codes in the world

containing some type of provisions for reducing the risks. Fault setbacks or avoidance of construction in the proximity

to seismically active faults, are usually supposed as the first priority. In this paper, based on some 1-g physical

modelling tests, clear perspectives of surface fault rupture propagation and its interaction with shallow rigid

foundations are presented. It is observed that the surface fault rupture could be diverted by massive structures seated

on thick soil deposits. Where possible the fault has been deviated by the presence of the rigid foundation, which

remained undisturbed on the footwall. It is shown that the setback provision does not give generally enough assurance

that future faulting would not threaten the existing structures.

H. Shahnazari, M. Esmaeili, H. Hosseini Ranjbar,
Volume 8, Issue 2 (6-2010)

Considerations on the explosion resistant design of special infrastructures have increased in the recent

years. Amongst the various types of infrastructures, road and railway tunnels have a unique importance due to their

vital role in connection routes in emergency conditions. In this study, the explosion effects of a projectile impacting on

a railway tunnel located in a jointed rock medium has been simulated using 2D DEM code. Primarily, a GP2000

projectile has been considered as a usual projectile and its penetration depth plus its crater diameter were calculated

in rock mass. The blast pressure was, then, calculated via empirical formula and applied on the boundary of crater as

input load. Finally, the wave pressure propagation through the jointed rock medium was investigated. In part of the

study a sensitivity analysis has been carried out on jointed rock parameters such as joint orientation, dynamic modulus

and damping ratio. Their effects on tunnel lining axial force as well as bending moment have also been investigated.

M. Mazloom ,
Volume 8, Issue 3 (9-2010)

 According to the Iranian code of practice for seismic resistant design of buildings, soft storey phenomenon happens in a storey when the lateral stiffness of the storey is lower than 70% of the stiffness of the upper storey, or if it is lower than 80% of the average stiffness of the three upper stories. In the combined structural systems containing moment frames and shear walls, it is possible that the shear walls of the lower stories crack however, this cracking may not occur in the upper stories. The main objective of this research is to investigate the possibility of having soft storey phenomenon in the storey, which is bellow the uncracked walls. If the tension stresses of shear walls obtained from ultimate load combinations exceed the rupture modulus of concrete, the walls are assumed to be cracked. For calculating the tension stresses of shear walls in different conditions, 10 concrete structures containing 15 stories were studied. Each of the structures was investigated according to the obligations of Iranian, Canadian, and American concrete building codes. Five different compressive strengths of 30, 40, 50, 60, and 70 MPa were assumed for the concrete of the structures. In other words, 150 computerized analyses were conducted in this research. In each analysis, 5 load combinations were imposed to the models. It means, the tension stresses of the shear walls in each storey, were calculated 750 times. The average wall to total stiffness ratios of the buildings were from 0.49 to 0.95, which was quite a wide range. The final conclusion was that the soft storey phenomenon did not happen in any of the structures investigated in this research. 

A. Kaveh, N. Farhoodi,
Volume 8, Issue 3 (9-2010)

In this paper, the problem of layout optimization for X-bracing of steel frames is studied using the ant system (AS). A new design method is employed to share the gravity and the lateral loads between the main frame and the bracings according to the requirements of the IBC2006 code. An algorithm is developed which is called optimum steel designer (OSD). An optimization method based on an approximate analysis is also developed for layout optimization of braced frames. This method is called the approximate optimum steel designer (AOSD) and uses a simple deterministic optimization algorithm leading to the optimum patterns and it is much faster than the OSD. Several numerical examples are treated by the proposed methods. Efficiency and accuracy of the methods are then discussed. A comparison is also made with Genetic algorithm for one of the frames.

J. Vafaie, T. Taghikhany, M. Tehranizadeh,
Volume 9, Issue 1 (3-2011)

The near field ground motions have a high amplitude pulse like at the beginning of the seismogram which are significantly influenced by the rupture mechanism and direction of rupture propagation. This type of ground motion cause higher demands for engineering structures and its response spectrum is dramatically different than far field spectra.

Tabriz is one of the ancient cities in

Azerbaijan province with many industrial factories, financial centers and historical monuments in North-West of Iran. In this region, North Tabriz Fault which has a well known history of intense seismic activity is passing through in close distance of urban area. In this regard investigation of near field ground motion effect on current practice seismic design spectrum in this region is necessary.

Hence, probabilistic seismic hazard analysis is carried out using appropriate attenuation relationship to consider near field effect. The peak ground acceleration (PGA) and several spectral accelerations (SA) over bedrock are estimated for different return periods and maps of iso acceleration contour lines are provided to indicate the earthquake hazard in different points of

Tabriz city.

Afterward, the generated horizontal equal-hazard spectrums considering near field effect are compared with different spectrums developed base on simple pulses model for near field motion. Both types spectrum used to verify current practice seismic design spectrum of Iranian code (2005) and International Building Code (IBC 2000). The results reveal the long-period structures which are seismically designed based on current practice seismic codes are in high risk to be damaged during near fault ground motion.

M. Mahmoudi, M. Zaree,
Volume 9, Issue 1 (3-2011)

Inelastic deformation of structural components is generally acceptable in seismic design. In such behavior, the strength of structures increases while plastic hinges are formed in members frequently. The strength revealed during the formation of plastic hinges is called "overstrength". Overstrength is one of the important parameters in the seismic design of structures. The present study tries to evaluate the overstrength of the concentrically steel braced frames (CBFs), considering reserved strength, because of members post-buckling. As such, a static nonlinear (pushover) analysis has been performed on the model buildings with single and double bracing bays, different stories and brace configurations (chevron V, invert Vand X-bracing). It has been realized that the number of bracing bays and the height of buildings have a low effect on reserve strength due to brace post-buckling. However, these parameters have a profound effect on the overstrength factor. These results indicate that the overstrength values for CBFs, proposed in seismic design codes, need to be modified.

Rouzbeh Dabiri, Faradjollah Askari, Ali Shafiee, Mohammad Kazem Jafari,
Volume 9, Issue 2 (6-2011)

Laboratory data, which relate the liquefaction resistance of Firoozkooh sand and non-plastic silt mixtures to shear wave velocity are

presented and compared to liquefaction criteria derived from seismic field measurements by Andrus and Stokoe [1]. In the work

described herein, cyclic triaxial and resonant column tests were conducted on specimens of clean sand and sand-silt mixtures with silt

content up to 60%, prepared at different densities. Cyclic undrained strength and small strain shear wave velocity were determined

for identical specimens formed by undercompaction method. It was found that silt content affects cyclic resistance and shear wave

velocity. In addition, the laboratory results indicated that using the existing field-based correlations will overestimate the cyclic

resistance of the Firoozkooh sand-silt mixtures when silt content is 60%. For clean sand and the specimens containing up to 30% fines,

results of this study on cyclic resistance are fairly consistent with Andrus and Stokoe correlations. These findings suggest the need for

further evaluation of the effects of non-plastic fines content upon liquefaction criteria derived from seismic field measurements.

Page 1 from 4    

© 2019 All Rights Reserved | International Journal of Civil Engineering

Designed & Developed by : Yektaweb