Search published articles


Showing 5 results for Client

M.e. Poorazizi, A.a. Alesheikh,
Volume 9, Issue 1 (3-2011)
Abstract

Air pollution is a serious challenge in densely populated cities. It poses a significant threat to human health, property and the environment throughout the developed and developing parts of the world. Real-time air quality monitoring and public access to related information are the key components of a successful environmental management. Mashups can be customized to adequately address the monitoring of such geographically oriented challenges. The growth of mashups has been accelerated by Web 2.0 technologies. The integration of Web 2.0 and GIS (Geographic Information System) has been highlighted by the second generation of Internet-based services that emphasizes on online information collaboration and sharing among users. The main objective of this paper is to assess, design and develop a Web 2.0 thin client application called Tehran Air Quality Reporter. The application uses Google Maps API (Application Programming Interface), Web GIServices (Geographic Information Services), and AJAX (Asynchronous JavaScript and XML) to disseminate real-time air quality information through internet. Such information can improve the decisions of the pertinent environmental organizations as well as urban settlers. The software also utilized DOM (Document Object Model) and JavaScript functionalities for handling the response events and providing flexibility and more interactivity. The developed Geo Mashup includes geospatial maps and features, standard business charts, node and link displays, as well as custom visual displays. All visualization components run in any web browsers and provide a user friendly environment.
Sung-Hoon An, Hunhee Cho, Ung-Kyun Lee,
Volume 9, Issue 1 (3-2011)
Abstract

In the early stages of a construction project, the reliability and accuracy of conceptual cost estimates are major concerns for clients and cost engineers. Previous studies applied scoring methods and established common rules or mathematical methods to assess the quality of cost estimates. However, those approaches have some limitations in adapting to real-world projects or require understanding of sophisticated statistical techniques. We propose a Conceptual Cost Estimate Reliability Index (CCERI), a simple, easy-to-use, and easy-to-understand tool that incorporates weights for 20 factors influencing the quality of conceptual cost estimates. The weights were obtained by eliciting experts’ experience and knowledge. Cost data from 71 building projects were used in the analysis and validation of the CCERI. The analysis reveals that a conceptual cost estimate with a CCERI score of less than 3000 has a high probability of exceeding 10% error, and such conceptual cost estimates are unlikely to be reliable. With the CCERI score, a decision maker or a client can recognize the reliability of the conceptual cost estimates and the score can thus support decision making using conceptual cost estimates. In addition, with the CCERI and the relative importance weights of factors affecting the conceptual cost estimates, the estimator can find ways to modify a conceptual cost estimate and reestimate it. These alternatives can decrease the risk in the conceptual estimated cost and assist in the successful management of a construction project.
Ch. Preece, H.y. Chong, H. Golizadeh, J. Rogers,
Volume 13, Issue 3 (9-2015)
Abstract

The management philosophy, namely, Customer relationship management (CRM) has been widely accepted and successfully applied across a range of sectors. However, there has been very little research efforts in the field of CRM in the construction industry. This paper provides a review of the CRM philosophy and technology, and considers the implications benefits and challenges to construction organizations at a strategic business and operational level. Given the generally unstable economic and highly competitive marketplace, implementation of CRM throughout the lifecycle of assets may provide for more effective management of existing and prospective clients. The CRM approach would seem to be compatible with general trends in the construction industry towards more collaborative working and the paper provides that both the philosophy and technologies can be integrated with current initiatives such as building information modeling (BIM). Construction clients in the public and private sector are diverse in nature, complex in their buying processes and at varying levels of knowledge of the Industry. In addition to seeking value for money from their projects and assets, they have become more concerned about sustainability and environmental impact. It has been recognized that management of a broader range of business and project level stakeholders is necessary.
Farnad Nasirzadeh, Hamed Mazandaranizadeh, Mehdi Rouhparvar,
Volume 14, Issue 3 (4-2016)
Abstract

Risk allocation is the definition and division of responsibility associated with a possible future loss or gain arising from an identified risk. Quantitative approaches to risk allocation have been developed to overcome the limitations of qualitative approaches, especially the issue of the amount of risk to be borne by each party. This paper presents a cooperative-bargaining game model for quantitative risk allocation that extends the previous existing system dynamics SD-based model. The behavior of contracting parties in the quantitative risk allocation process is modeled as the players’ behavior in a game. The proposed model accounts for both the client costs and the contractor costs to perform the quantitative risk allocation process. To evaluate the performance of the proposed model, it has been employed in a pipeline project. Quantitative risk allocation is performed for the inflation as one of the most important identified risks. It is shown that using the proposed cooperative-bargaining game model, both the client and contractor costs are decreased in comparison to the previous SD-based risk allocation approach.


Onyebuchi Nwabueze Mogbo, Balkiz Yapicioglu, Ibrahim Yitmen,
Volume 15, Issue 5 (7-2017)
Abstract

There are challenges and opportunities of deploying policies for transport infrastructure improvement in developing countries. Transport infrastructural development remains a major tool for achieving the aspirations of the newly introduced economic principles of the Federal Government of Nigeria. This study investigates the impact of innovative strategic approaches for improved transport policy and how the strategies are well incorporated to solve the problems faced in the infrastructure sector in order to enhance improved economic growth. The research involves a questionnaire survey conducted to key stakeholders in Nigerian six states. The study was focused on the stakeholders selected from the public entities, private clients, consultants, and contractors operating within the Nigerian construction sector. Based on the empirical data, the specific ways in which innovative strategies for transport policies affect infrastructure development contributing to sustainable economic growth have been shown. The findings contribute to the fields of innovative strategies for transport policies in infrastructure development by linking various aspects of innovative strategies for transport policies and infrastructure development and their interrelationships to sustainable economic development from stakeholders’ perspective. The results show that variables of innovative strategies in transportation and transportation infrastructure improvement have different roles and significant positive impact on sustainable economic development.



Page 1 from 1     

© 2019 All Rights Reserved | International Journal of Civil Engineering

Designed & Developed by : Yektaweb