Search published articles


Showing 3 results for Barrel Vaults

A. Kaveh, M. Farahani, N. Shojaei,
Volume 10, Issue 4 (12-2012)
Abstract

Barrel vaults are attractive space structures that cover large area without intermediate supports. In this paper, the charged

search system (CSS) optimization algorithm is employed for optimal design of barrel vaults. This method utilizes the governing

laws of Coulomb and Gauss from electrostatics and the Newtonian law of mechanics. The results demonstrate the efficiency of

the discrete CSS algorithm compared to other meta-heuristic algorithms.


A. Kaveh, A. Nasrolahi,
Volume 12, Issue 1 (3-2014)
Abstract

In this paper, a new enhanced version of the Particle Swarm Optimization (PSO) is presented. An important modification is made by adding probabilistic functions into PSO, and it is named Probabilistic Particle Swarm Optimization (PPSO). Since the variation of the velocity of particles in PSO constitutes its search engine, it should provide two phases of optimization process which are: exploration and exploitation. However, this aim is unachievable due to the lack of balanced particles’ velocity formula in the PSO. The main feature presented in the study is the introduction of a probabilistic scheme for updating the velocity of each particle. The Probabilistic Particle Swarm Optimization (PPSO) formulation thus developed allows us to find the best sequence of the exploration and exploitation phases entailed by the optimization search process. The validity of the present approach is demonstrated by solving three classical sizing optimization problems of spatial truss structures.
A. Kaveh, B. Mirzaei, A. Jafarvand,
Volume 12, Issue 4 (12-2014)
Abstract

In this paper, the problem of simultaneous shape and size optimization of single-layer barrel vault frames which contains both of discrete and continuous variables is addressed. In this method, the improved magnetic charged system search (IMCSS) is utilized as the optimization algorithm and the open application programming interface (OAPI) plays the role of interfacing analysis software with the programming language. A comparison between the results of the present method and some existing algorithms confirms the high ability of this approach in simultaneous shape and size optimization of the practical and large-scale spatial structures.

Page 1 from 1     

© 2019 All Rights Reserved | International Journal of Civil Engineering

Designed & Developed by : Yektaweb