Search published articles


Showing 3 results for Sarkardeh

O. Nazari, E. Jabbari, H. Sarkardeh,
Volume 13, Issue 1 (Transaction A: Civil Engineering March 2015)
Abstract

To dissipate energy and invert excessive discharge flow away from high dams into plunge pool, flip buckets are commonly designed and optimized by hydraulic model studies. In the present study, performance of chute flip buckets in different hydraulic and geometry conditions was investigated using experimental data of five different physical models. The collected experimental data such as Froude number, radius of flip bucket and slope of chute covered a wide range of chute flip buckets in prototype. By analyzing the data, relations for dynamic values of maximum and minimum pressures and their location along the flip bucket were extracted. Moreover, pressure distribution along the central axis of flip bucket was defined. Finally, results of the present research were compared with that of the other researches. Results of this study could be used in the design of chute flip buckets in hydraulic engineering.
Fatemeh Kazemi, Dr Saeed Reza Khodashenas, Hamed Sarkardeh,
Volume 14, Issue 1 (Transaction A: Civil Engineering 2016)
Abstract

Stilling basins dissipate energy in order to form hydraulic jumps and rotational flows. Hydraulic jump and rotational current phenomenon produces pressure fluctuation at the bottom of stilling basins. In the present study, pressure fluctuations and their locations have been studied in a physical model of Nimrod Dam. Results showed that fluctuations in presence of jump in the basin are high and therefore the fluctuation factors are respectively high. Regarding available empirical equations, the thickness of slab for different hydraulic conditions were calculated and compared in 1D and 2D conditions. By analyzing collected data, it was observed that, results of 1D were underestimated in comparison by 2D calculations.


Ziba Fazel, Masoome Fazelian, Dr. Hamed Sarkardeh,
Volume 15, Issue 2 (Transaction A: Civil Engineering 2017)
Abstract

Air-water flow is a complex and challenging subject in many engineering fields as well as hydraulic engineering and discovery of its characteristics can help the engineers to predict and analyze a probable phenomenon. In the present paper, development of a device capable of measuring the flow velocity, air concentration, diameter and counts of bubbles in air-water flows is described. The heart of the present device is two resistive probes with a novel configuration. Being pressure and corrosion resistant and also having negligible resistivity in the flow are some of the unique features of the employed needles. Moreover, sampling frequency and time can be set for the intended application by the user. In the present electronic board, maximum available sampling frequency is in the order of KHz, while the time of sampling is not limited. The circuit is designed with ability for avoiding the polarization of the probe tip. Increasing the number of probes up to four which can operate together and suitable for more complex flows with no change in the electronic board is another advantage of the proposed device. Different tests for verification of the device accuracy have been performed and good results were reported for measurements.



Page 1 from 1     

© 2019 All Rights Reserved | International Journal of Civil Engineering

Designed & Developed by : Yektaweb