Search published articles


Showing 4 results for Najafi Kani

A. Allahverdi, E. Najafi Kani,
Volume 7, Issue 3 (Sept. 2009)
Abstract

It has been shown that geopolymerization can transform a wide range of waste aluminosilicate materials into building materials with excellent chemical and physical properties such as fire and acid resistance. In this research work, geopolymerization of construction waste materials with different alkali-activators based on combinations of Na2SiO3 and NaOH has been investigated. A number of systems were designed and prepared with water-to-dry binder ratio, silica modulus, and sodium oxide concentration were adjusted at different levels and setting time and 28-day compressive strength were studied. The results obtained reveal that construction wastes can be activated using a proportioned mixture of Na2SiO3 and NaOH resulting in the formation of a geopolymer cement system exhibiting suitable workability and acceptable setting time and compressive strength. Laboratory techniques of Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM) were utilized for studying molecular and microstructure of the materials.
A. Allahverdi, B. Shaverdi, E. Najafi Kani,
Volume 8, Issue 4 (December 2010)
Abstract

:The aim of this work is to investigate the influence of sodium oxide on properties of fresh and hardened paste of alkali-activated blast furnace slag from Isfahan steel plant. The silica modulus (SiO2/Na2O) of activator was adjusted at 0.6 and a number of mixes were designed in such a way to contain different levels of sodium oxide including 1, 2, 3, 4, 5, and 6% by weight of dry slag. The most important physico-mechanical properties of the pastes including workability, initial and final setting times, 28-day compressive strength and efflorescence severity were measured. Suitable mixes were chosen for more studies including compressive strength at different ages, 90-day autogenous and drying shrinkages. According to the results, increasing the sodium oxide content of the mixes results in increased workability, reduced setting times, and higher compressive strength. The results confirm the possibility of achieving 28-day compressive strengths up to 27.5, 50.0 and 70.0 MPa for mixes with sodium oxide content of 1, 2 and 3 wt% respectively. The measured values for autogenous shrinkage were all less than 0.1% and SEM studies showed a significant decrease in pore sizes with increasing sodium oxide concentration from 1 to 2%.


A. Allahverdi, E. Najafi Kani,
Volume 8, Issue 4 (December 2010)
Abstract

Fast set and high early strength cements containing calcium fluoroaluminate phase (C11A7CaF2) are usually produced by sintering a proportioned raw mix from calcareous and argillaceous components as the main raw materials, at reduced temperatures about 1330 °C. In this work, the possibility of utilizing natural pozzolan as the argillaceous component in the cement raw mix and in order to decrease the sintering temperature of fast set and high early strength cement clinker containing C11A7CaF2 phase has been investigated. The results reveal that the sintering temperature can be reduced to temperatures as low as 1270 °C by utilizing a suitable natural pozzolan and improving the mix burnability. The experimental results confirm the possibility of achieving final setting times as low as 10 min and 3-day compressive strengths as high as 57 MPa


Ali Allahverdi, Ebrahim Najafi Kani, Babak Shaverdi,
Volume 15, Issue 4 (Transaction A: Civil Engineering 2017)
Abstract

Present work is devoted to a better insight into the identification of carbonation versus efflorescence formation in alkali-activated blast-furnace slag and investigates the relation between the chemical composition of the alkali-activator and the extent of the occurrence of these two phenomena. Obtained results showed that mixes of relatively lower alkali contents suffers not only from weak compressive strength due microstructural defects, but also from carbonation during the first few days. On the other hand, mixes containing relatively higher alkali contents strongly suffers from efflorescence formation in spite of their interestingly high compressive strengths. Carbonation during the first few days can partially neutralize the alkali content of the surface layers of the material which in turn significantly affects the activation mechanism leading to the formation of binding compounds of lower degree of Si substitution with Al in the molecular structure.



Page 1 from 1     

© 2019 All Rights Reserved | International Journal of Civil Engineering

Designed & Developed by : Yektaweb