Search published articles

Showing 2 results for Mortazavi

M. Mortazavi Zanjani, A. Soroush,
Volume 11, Issue 2 (Transaction B: Geotechnical Engineering 2013)

This paper presents results of a thorough study on the phenomenon of rupture propagation of reverse faults from the bedrock

foundation through homogeneous clayey embankments, mainly at the end of construction, with complementary analyses for the

steady state seepage through the embankment. The study is performed by means of numerical analyses with a nonlinear Finite

Element Method, verified beforehand through simulating fault propagations in an existing horizontal soil layer experiment.

Multiple cases considering three slopes & three clayey soils for the embankment and five fault dip angles, activated in several

locations of base of the embankment, are analyzed. The results show that ruptures in the embankment follow optimal paths to

reach the surface and their near-surface directions are predictable with respect to corresponding theories of classical soil

mechanics. Various types of rupture in the embankment are produced on the basis of the rupture types, the embankment base is

divided into three distinguishable zones, which can be used for interpretation of fault ruptures behavior. The effects of materials

and slope of the embankment, fault dip angle, and fault’s point of application in the bedrock-soil interface on the rupture paths

are studied in depth.

A. R. Rahai, M. Mortazavi,
Volume 12, Issue 4 (Transaction A: Civil Engineering December 2014)

During the past years the use of buckling restrained braces (BRBs) have had a dramatic growth due to their better performance comparing to conventional braces. BRBs have more ductility and energy absorption capacity by excluding the overall brace buckling. However, even these kinds of braces have some problems restricting their use in some projects, i.e. high tolerance of applying unbonding material, concrete placing difficulties and their weight. Accordingly, many researchers have conducted experiments to find the possibility of shortening or even eliminating the infill material of the braces. The following study has addressed the effect of debonding material friction ratio, shortening the concrete fill, and finally eliminating it if possible, by reshaping the core element with constant section area. The operated analysis has been carried out both numerically and experimentally. ABAQUS finite element software was applied for numerical analysis and the results were verified by an experimental study in two groups of models each including four full-scale brace models. With a constant core section area, results revealed that without the risk of buckling, the concrete cover length could be reduced. With a special core profile, the infill may be fully omitted and the restrainer would be made up of only a steel tube, which may happen without any changes made to the cross sectional area of the core profile.

Page 1 from 1     

© 2019 All Rights Reserved | International Journal of Civil Engineering

Designed & Developed by : Yektaweb