Search published articles

Showing 5 results for Mazloom

Mazloom M., Ramezanian Pour A.a.,
Volume 2, Issue 1 (March 2004)

This paper presents the long-term deformations of reinforced high-strength concrete columns subjected to constant sustained axial forces. The objective of the study was to investigate the effects of binder systems containing different levels of silica fume on time-dependent behaviour of high-strength concrete columns. The experimental part of the work focused on concrete mixes having a fixed water/binder ratio of 0.35 and a constant total binder content of 500 kg/m3. The percentages of silica fume that replaced cement in this research were: 0%, 6%, 8%, 10% and 15%. The mechanical properties evaluated in the laboratory were: compressive strength secant modulus of elasticity strain due to creep and shrinkage. The theoretical part of the work is about stress redistribution between concrete and steel reinforcement as a result of time-dependent behaviour of concrete. The technique used for including creep in the analysis of reinforced concrete columns was age-adjusted effective modulus method. The results of this research indicate that as the proportion of silica fume increased, the short-term mechanical properties of concrete such as 28-day compressive strength and secant modulus improved. Also the percentages of silica fume replacement did not have a significant influence on total shrinkage however, the autogenous shrinkage of concrete increased as the amount of silica fume increased. Moreover, the basic creep of concrete decreased at higher silica fume replacement levels. Drying creep (total creep - basic creep) was negligible in this investigation. The results of the theoretical part of this researchindicate that as the proportion of silica fume increased, the gradual transfer of load from the concrete to the reinforcement decreased and also the effect of steel bars in lowering the concrete deformation reduced. Moreover, the total strain of concrete columns decreased at higher silicafume replacement levels.
M. Mazloom, A.a. Mehrabian,
Volume 4, Issue 4 (December 2006)

The objective of this paper is to present a new method for protecting the lives of residents in catastrophic earthquake failures of unreinforced masonry buildings by introducing some safe rooms within the buildings. The main idea is that occupants can seek refuge within the safe rooms as soon as the earthquake ground motions are felt. The information obtained from the historical ground motions happened in seismic zones around the globe expresses the lack of enough safety of masonry buildings against earthquake. For this potentially important reason, an attempt has been made to create some cost-effective seismic-resistant areas in some parts of the existing masonry buildings, which are called safe rooms. The practical method for creating these areas and increasing the occupant safety of the buildings is to install some prefabricated steel frames in some of their rooms or in their halls. These frames do not carry any service loads before earthquake. However, if a near field seismic event happens and the load bearing walls of the building destroy, some parts of its floors, which are in the safe areas, will fall on the roof of the installed frames consequently, the occupants who have sheltered in the safe rooms will survive. This paper expresses the experimental and theoretical work executed on the steel structures of the safe rooms for bearing the shock and impact loads. Finally, it was concluded that both the strength and displacement capacity of the steel frames were adequate to accommodate the distortions generated by seismic loads and aftershocks properly.
M. Rezaiee-Pajand, M. Riyazi-Mazloomi,
Volume 5, Issue 3 (September 2007)

In this research a new approach is proposed for elasto-plastic analysis of structures with truss elements. This method covers both perfectly plastic and hardening properties. The Proposed technique uses substituting virtual loads instead of modifying the stiffness matrix. To solve this kind of problems, complementary programming is utilized. Numerical examples demonstrate that elastoplastic analysis by this approach has very good convergence, rapidity, and accuracy.
M. Mazloom, A.a. Mehrabian,
Volume 7, Issue 4 (December 2009)

Pullback test has no scrupulous theoretical establishment. It is based on the hypothesis that the response of

the structure can be related to the response of an equivalent single degree-of-freedom (SDOF) system. This implies that

the response is controlled by a single mode. In fact, the steel frame of each safe room, which is introduced within the

unreinforced masonry buildings for protecting the lives of residents in catastrophic earthquake failures, contains a

SDOF structural system. In pullback test, the steel frame carries its gravity load first, and then it will be pushed under

an incremental lateral roof displacement pattern, which is imposed to its center of mass. This paper expresses the

results of 13 pullback tests executed by the authors on the steel frames of safe rooms. The results show that pullback

test is a practical method for seismic performance evaluation of safe rooms. Also the performance of these frames

located in a collapsing three storey masonry building is presented with favorable conclusions. In fact, the results of

pullback test of the safe room located at the ground-floor level were compared with the requirements of Iranian code

for seismic resistant design and it was concluded that the steel frame had an acceptable performance against seismic


M. Mazloom ,
Volume 8, Issue 3 (September 2010)

 According to the Iranian code of practice for seismic resistant design of buildings, soft storey phenomenon happens in a storey when the lateral stiffness of the storey is lower than 70% of the stiffness of the upper storey, or if it is lower than 80% of the average stiffness of the three upper stories. In the combined structural systems containing moment frames and shear walls, it is possible that the shear walls of the lower stories crack however, this cracking may not occur in the upper stories. The main objective of this research is to investigate the possibility of having soft storey phenomenon in the storey, which is bellow the uncracked walls. If the tension stresses of shear walls obtained from ultimate load combinations exceed the rupture modulus of concrete, the walls are assumed to be cracked. For calculating the tension stresses of shear walls in different conditions, 10 concrete structures containing 15 stories were studied. Each of the structures was investigated according to the obligations of Iranian, Canadian, and American concrete building codes. Five different compressive strengths of 30, 40, 50, 60, and 70 MPa were assumed for the concrete of the structures. In other words, 150 computerized analyses were conducted in this research. In each analysis, 5 load combinations were imposed to the models. It means, the tension stresses of the shear walls in each storey, were calculated 750 times. The average wall to total stiffness ratios of the buildings were from 0.49 to 0.95, which was quite a wide range. The final conclusion was that the soft storey phenomenon did not happen in any of the structures investigated in this research. 

Page 1 from 1     

© 2019 All Rights Reserved | International Journal of Civil Engineering

Designed & Developed by : Yektaweb