Search published articles


Showing 2 results for Khalili Shayan

H. Khalili Shayan, J. Farhoudi, H. Hamidifar,
Volume 13, Issue 1 (Transaction A: Civil Engineering March 2015)
Abstract

Because of the complexity of the physical processes in the vicinity of the hydraulic structures due to the separation of the flow, traditional methods for for prediction of maximum scour depth downstream of hydraulic structures are mostly based on empirical approaches. Hence, only a few theoretical works have been reported to study this phenomenon. The present paper describes a new approach based on the momentum principles to estimate the maximum local scour depth downstream of a submerged sluice gate flowing over horizontal or adverse stilling basin. A control volume of the fluid in the equilibrium state of the scour hole was considered and based on momentum principles, some equations are derived to estimate the scour depth at equilibrium state. To verify the proposed equations, large numbers of experiments were planned and conducted under wide range of characteristic parameters such as, incoming Froude number, sediment size, tailwater depth, length and slope of the apron. It was found that the proposed equations fall in a good agreement with experimental results. It was also observed that, in the case of horizontal apron, a specific tailwater depth exists with which the local scour depth attains a minimum value. However, in the case of adverse basins when the tailwater depth takes a specific value, the maximum depth of the scour hole reaches to its maximum and then decreases to a constant value as the tailwater depth increases. This critical tailwater depth was formulated using a semi-theoretical equation.
H. Khalili Shayan, E. Amiri-Tokaldany,
Volume 13, Issue 4 (Transaction A: Civil Engineering December 2015)
Abstract

Upstream blankets, drains and cutoff walls are considered as effective measures to reduce seepage, uplift pressure and exit gradient under the foundation of hydraulic structures. To investigate the effectiveness of these measures, individually or in accordance with others, a large number of experiments were carried out on a laboratory model. To extend the investigation for unlimited arrangements, the physical conditions of all experiments were simulated with a mathematical model. Having compared the data obtained from experiments with those provided from the mathematical model, a good correlation was found between the two sets of data indicating that the mathematical model could be used as a useful tool for calculating the effects of various measures on designing hydraulic structures. Based on this correlation a large number of different inclined angles of cutoff walls, lengths of upstream blankets, and various positions of drains within the mathematical model were simulated. It was found that regardless of their length, the blankets reduce seepage, uplift pressure and exit gradient. However, vertical cutoff walls are the most effective. Moreover, it was found that the best positions of a cutoff wall to reduce seepage flow and uplift force are at the downstream and upstream end, respectively. Also, having simulated the effects of drains, it was found that the maximum reduction in uplift force takes place when the drain is positioned at a distance of 1/3 times the dam width at the downstream of the upstream end. Finally, it was indicated that the maximum reduction in exit gradient occurs when a drain is placed at a distance of 2/3 times of the dam width from upstream end or at the downstream end.



Page 1 from 1     

© 2019 All Rights Reserved | International Journal of Civil Engineering

Designed & Developed by : Yektaweb