Search published articles

Showing 2 results for Guo

H. Liu, M. He, J. Guo, Zh. Hou, Y. Shi,
Volume 13, Issue 2 (Transaction A: Civil Engineering June 2015)

Self-centering pier (SCP) has been viewed as a remarkable accomplishment which is able to sustain major lateral loading with reduced structure damage in seismic engineering. Stiffness deterioration observed in experiment is vital for the seismic performance of self-centering concrete pier. In this contribution, the associated stiffness deterioration with respect to the structural damage is modeled in a modified analytical model for SCP comprehensively. In the proposed modified theoretical model, the lateral force-displacement relation associated with the stiffness reducing is analyzed. Three damage factors are introduced in the stiffness deterioration analysis to illustrate the damage evolution caused by gradually increasing lateral displacement. The proposed modified quasic-static model with damage evolution or stiffness deterioration has been validated against an experiment we conducted, where a good agreement is clearly evident. Subsequently, a parametric investigation focusing on aspect ratio, initial pre-tension, and ratio of ED (Energy Dissipator) was conducted to evaluate the hysteretic behavior of SCP under quasi-statically cyclic loading.
Jun Lin, Guojun Cai, Songyu Liu, Anand J. Puppala, Haifeng Zou,
Volume 15, Issue 3 (Transaction B: Geotechnical Engineering 2017)

The correlations and relationships between electrical resistivity and geotechnical parameters of soils have become very important for site investigation. However, there is a lack of understanding about the relationships between electrical resistivity and geotechnical parameter values. The resistivity piezocone penetration tests and laboratory tests have been conducted for geotechnical investigations of marine clay in Jiangsu province of China to establish quantitative relationships between electrical and geotechnical data. The geotechnical investigation reveals that electrical resistivity values are very low for marine clay in Jiangsu, ranging from 5 to 10 Ω m. The correlations between electrical resistivity and geotechnical parameters are examined using Spearman’s rank correlation test that is a rank-based test for correlation between two variables without any assumption about the data distribution. It was shown that the electrical resistivity has strong bonds with the moisture content, void ratio, salt content and plasticity index. In terms of quantitative relationships, good fitting relationships between electrical resistivity and selected geotechnical parameters are observed. The statistical analysis indicates that the electrical resistivity is a good indirect predictor of selected geotechnical parameters. The data studied demonstrates the usefulness of the in situ resistivity method in geotechnical investigations, which have an advantage over other geotechnical methods in cost performance.

Page 1 from 1     

© 2019 All Rights Reserved | International Journal of Civil Engineering

Designed & Developed by : Yektaweb