Search published articles

Showing 5 results for Fakharian

Shahram Feizee Masouleh, Kazem Fakharian,
Volume 6, Issue 3 (September 2008)

A finite-difference based continuum numerical model is developed for the pile-soil dynamic response during pile driving. The model is capable of simulating the wave propagation analysis along the pile shaft and through the soil media. The pile-soil media, loading and boundary conditions are such that axisymmetric assumption seems to be an optimized choice to substantially reduce the analysis time and effort. The hydrostatic effect of water is also considered on the effective stresses throughout the soil media and at the pilesoil interface. The developed model is used for signal matching analysis of a well-documented driven pile. The results showed very good agreement with field measurements. It is found that the effect of radiation damping significantly changes the pile-soil stiffness due to the hammer blow. The pile tip response shows substantial increase in soil stiffness below and around the pile tip due to driving efforts.
Arash Nayeri, Kazem Fakharian,
Volume 7, Issue 4 (December 2009)

Abstract: This paper presents the results of pullout tests on uniaxial geogrid embedded in silica sand under monotonic and cyclic pullout forces. The new testing device as a recently developed automated pullout test device for soil-geogrid strength and deformation behavior investigation is capable of applying load/displacement controlled monotonic/cyclic forces at different rates/frequencies and wave shapes, through a computer closed-loop system. Two grades of extruded HDPE uniaxial geogrids and uniform silica sand are used throughout the experiments. The effects of vertical surcharge, sand relative density, extensibility of reinforcement and cyclic pullout loads are investigated on the pullout resistance, nodal displacement distributions, post-cyclic pullout resistance and cyclic accumulated displacement of the geogrid. Tell-tale type transducers are implemented along the geogrid at several points to measure the relative displacements along the geogrid embedded length. In monotonic tests, decrease in relative displacement between soil and geogrid by increase of vertical stress and sand relative density are the main conclusions structural stiffness of geogrid has a direct effect on pullout resistance in different surcharges. In cyclic tests it is observed that the variation of post-cyclic strength ranges from minus 10% to plus 20% of monotonic strength values and cyclic accumulated displacements are increased as normal pressure increase, but no practical specific comment can be made at this stage on the post-cyclic strength of geogrids embedded in silica sand. It is also observed that in loose sand condition, the cyclic accumulated displacements are considerably smaller as compared to dense sand condition.
I. Hosseinzadeh Attar, K. Fakharian,
Volume 11, Issue 2 (Transaction B: Geotechnical Engineering 2013)

Pile foundations are frequently used in industrial projects in southwest lowlands of Iran. Although high setup of shaft resistance

is usually reported in the area, no reliable formulation or guidelines are available for considering the increased capacity in design

applications. Therefore, the pile design practices are usually not optimized. The main objective of this paper is presenting a site

specific formulation for setup effects of a utility plant in southwest Iran in which a good database of prestressed concrete driven

piles is available. Fajr-II Petrochemical site in PetZone of Mahshahr accommodating a utility plant is selected as the database of

the current study. The setup factor (A) and the reference time (t0) are evaluated through processing of a relatively large database

of this well-supervised piling project. As the main portion of variations of driven piles capacity with time is related to shaft, only

shaft resistance variations are considered in this research. The shaft capacity variations are derived from signal matching analysis

on PDA tests. Reliability of PDA tests has been confirmed through comparing with the static load test results. Influence of driving

the surrounding piles on setup factor is also investigated. The results show that the average setup factor (A) and the reference time

(t0) of 0.30 and 0.01 day, respectively, are proper values for estimating the long term capacity in this region. Evaluation of the

results indicates that driving 8 piles around the test pile has increased the “A” factor average of 40% resultingin increase of the

shaft capacity about 19% in one month and 22% in one year, in comparison with the tested piles with no surrounding piles driven.

A. H. Eghbali, K. Fakharian,
Volume 12, Issue 1 (Transaction B: Geotechnical Engineering, January 2014)

Portland cement can be mixed with sand to improve its mechanical characteristics. Many studies are reported in literature on this topic, but the effect of principal stress rotation has not been investigated yet. Considering the inherent anisotropy of most sands, it is not clear whether the added cement shall contribute to equal increase in strength and stiffness at vertical and horizontal directions or not. Furthermore, it is not well understood how the cement as an additive in non-compacted (loose) sand compared to compacted (dense) sand without cement, contribute to improving the material behavior in undrained condition such as limiting the deformations and the liquefaction potential. In this research, undrained triaxial and simple shear tests under different stress paths are carried out on different mixtures of Portland cement (by adding 1.5, 3 and 5 percent) with clean sand to investigate the effect of principal stress rotations. The triaxial test results revealed that the cement mixture reduces the anisotropy, while it improves the mixture mechanical properties compared to compacted sand without cement. The results of the simple shear tests validated the triaxial test results and further clarified the effect of the  parameter or rotation of principal stresses on the behavior of cemented sand mixtures.
Kazem Fakharian, Ali Borhani,
Volume 14, Issue 4 (Transaction A: Civil Engineering 2016)

The behavior of Chamkhaleh sand and three other recognized sands namely, Babolsar, Firouzkuh and Standard (Ottawa) sands are compared using triaxial apparatus under undrained monotonic loading conditions. Chamkhaleh and Babolsar sands are supplied naturally from southern Caspian Sea shorelines, whereas artificial Firouzkuh and Standard sands were supplied commercially. Samples were prepared using wet tamping with regard to the reduced compaction effect at relative density of 15% under isotropic consolidation pressures of 100, 300 and 500 kPa. The results of triaxial tests have indicated that Chamkhaleh sand has much more dilation tendency than the other sands. In order to evaluate the reasons behind this behavior, the spherecity and roundness of all the four sand particles were measured using an image processing method. It was revealed that the spherecity of the four sands is not much different, but Chamkhaleh sand is more angular than the other sands. For comparison of the dilative response of the sands in undrained triaxial tests, a “dilation tendency index” is introduced. This index may be used as a criterion for measuring the dilation of sands in undrained tests. Results have shown that the internal friction angle under the steady state condition is more dependent on the shape of particles than the maximum strength condition. For spherecities greater than 0.5, the dependency rate of sand behavior on the roundness is decreased.

Page 1 from 1     

© 2019 All Rights Reserved | International Journal of Civil Engineering

Designed & Developed by : Yektaweb